Trees, Forests and Rearranging
By P. F. Windley

This paper describes a method of rearranging data in a computer, so as to minimize the amount
of storage space used. Expressions for the mean and variance of the numbers of comparisons
necessary, are produced. These are compared with the number of comparisons required in a

merging procedure.
Introduction

Friend (Friend, 1956) considers the influence of access
time when merging data stored on magnetic tape and
indicates that a special first pass is necessary to produce
long sequences, in order to reduce the subsequent
number of passes required. He also discusses, as does
Bell (Bell, 1958), several techniques for doing the neces-
sary preliminary rearrangement within the computer.
All the methods they consider involve a factor of N2
in the expression for the number of comparisons needed
(where N is the number of items) except internal merging,
where the expression is N[log, N]. The two disad-
vantages of internal merging are that it needs working
space sufficient to hold at least N/2 items, which reduces
the length of the sequences which can be produced
internally, and that at every pass all the data is moved
from one set of locations in the machine to another.
If the key is short these objections can be partly removed
by detached-key techniques. The method of rearranging
by use of a “‘tree,” described briefly by Douglas
(Douglas, 1959) and attributed to Berners-Lee, does not
suffer from these disadvantages. Once the data has
been placed in the store, it is not moved until it is picked
out in its final order. Sufficient storage space is only
required to hold three addresses with each item of data.
The number of comparisons necessary depends on the
initial sequence. We consider here some variations of
this method and derive expressions for the mean and
variance of the comparisons, taken over all possible
initial sequences.

Trees

A tree may be defined as a network of points arranged
in levels. The bottom level contains only one point
called the root point. Any other point is connected to

one and only one point in the next lower level and up
to n points in the next higher level. For a binary tree,
n = 2 and we shall discuss only binary trees in what
follows. A direction is associated with each connection
from one point to another at the next higher level.
These directions are called left and right. An item of
data is associated with every point of the tree. The
addresses of those items which are connected direct to a
certain item, are stored with that item. These addresses
are known as the left address, the right address and the
back address. The left address indicates the location in
the machine where the item on the next higher level of
the tree in direction left is stored. The back address
indicates the point on the next lower level to which
that item is connected. All points connected to an item
through its left address form the /left branch of that item.
Fig. | shows how items A-F, together with their con-
necting addresses are stored in locations 1-6 of a com-
puter to form the tree shown.

The left branch of the root point A contains items B,
D, E and F.

The Growth of a Tree

A tree grows by taking the items in their initial
sequence and placing them one by one on the tree. The
tree is made to grow in such a way that for every item X,
all the items on the left branch of X are required before
X and all the points on the right branch of X after X, in
the final order. For example, the tree in Fig. | represents
the initial sequence A, B, C, D, E, F and the final order
F, E, B, D, A, C. Suppose that it is required to add
item G to this tree, and that G occurs between B and D
in the final order. G is first compared with the root
point A. G comes before A in the final order so it must
be stored on the left branch of A. The left address of A
specifies the next item, B, to be compared with G.

. LEFT RIGHT BACK
LOCATION ITEM ADDRESS ADDRESS ADDRESS
1 A 2 3
2 B 5 4 | o
3 C l b
4 D 2 -
5 E 6 2 B ; C
6 F 5 A

Fig. 1.—Storage of items in the form of a tree

84

¥20¢ Jequiedag ¢| uo 1sanb Aq 66/ 70S/¥8/2/S/elo1ue/|ulwoo/woo dno-olwepeoe//:sdiy wouy papeojumoq

Trees, Forests and Rearranging

LEFT RIGHT BACK
LOCATION ITEM ADDRESS ADDRESS ADDRESS
] A 2 3
2 B 5 4 1
3 C ! F N
4 D 7 2 E D
5 1 E 6 2 o
6 | F 5 B ¢
7 G 4 A

Fig. 2.—The growth of the tree

This comparison shows that G must be stored on the
right branch of B. Hence the next comparison is made
with D, the item specified by the right address of B.
The final comparison shows that G belongs to the left
branch of D. D as yet has no left branch so it is given
left address 7, the address in which G is going to be
stored, and G is given back address 4, the address of D.
The new tree is shown in Fig. 2.

Note that G does not have to be placed in location 7.
It can be placed in any vacant location provided the left
address of D is adjusted accordingly. The algorithm
for placing a point on the tree is:

(1) Set the address of the root point as the address of
the item with which to make the next comparison.
Jump to 3. N

(2) Set the left (or right) address as the address of the
item with which to make the next cormparison.

(3) Compare the item about to be placed on the tree
with the item specified in 1 or 2.

(4) Decide whether the new item is to be placed on
the left or right branch of the item with which it
has just been compared.

(5) Extract the next left (or right) address and examine
it for zero. If not zero jump to 2.

(6) Place the new item on the tree with its back address
referring to the last item with which it was com-
pared.

(7) Set the left (or right) address previously zero, to
the address in which the new item was placed in 6.

Picking the Data off the Tree

The data must be picked off the tree in such a way
that for every item X, all the data on the left branch of X
is picked before X, and all the data on the right branch
of X is picked after X. Suppose the program has
reached item X, now proceed as follows:

(1) Examine the left address of X. If it has no left
address then either it has no left branch or all the
points on its left branch have already been picked.
In this case proceed to 2. If it has a left address
remove this address, use it to specify X' the item
for the next examination, and repeat from 1.

85

(2) Examine X to see if it has been picked. If it has,
jump to 4. If not, pick it and mark it as picked.

(3) Examine the right address of X. If this address
exists, remove it, use it to specify X', the item for

the next examination, and repeat from 1. If no
right address exists, proceed to 4.
(4) Examine the back address of X. If no back

address exists, X is the root point and the pro-
cedure finishes. Otherwise the back address
specifies the item for the next examination. Repeat
from 1.

The procedure starts by examining the root point and
moves up and down every connection in the tree.
Hence, 2N examinations are made. Every time a climb
is made up the tree, an address in the main store is
removed, also before a climb to the right a mark is
made to say that an item has been picked. This mark
nezd not be made if there is no right address, and by
suitable packing it can be made at the same time as the
right address is removed. Hence this procedure makes
in all 3(N-1) references to the store: two references for
every climb up the tree and one for every climb down.

The Number of Comparisons necessary during the
Growth of the Tree

Assign a value to every level of the tree. The root
point has value 1, the points on the next level 2, and so
forth. Let N be the number of points on the tree.
The total value of the tree, which is the sum of the values
of all the points on the tree, depends on the shape of the
tree and is determined by the initial sequence of the data.

Denote the shape of the tree by S and the total value
of the tree by R(N, S). Let P(N, S) be the probability
that a tree of N points has shape S. A point on the rth
level of the tree must have caused comparisons with the
(r — 1) points on whose branches it is placed. Therefore
the total number of comparisons is R(N, S) — N.

The Mean Value of a Tree
The Mean Value Q(N) of a tree of N points is given
by O(N)= X P(N, S)R(N, S), where the summation is
s

¥20¢ Jequiedag ¢| uo 1sanb Aq 66/ 70S/¥8/2/S/elo1ue/|ulwoo/woo dno-olwepeoe//:sdiy wouy papeojumoq

Trees, Forests and Rearranging

taken over all possible shapes of tree. Now the left
branch of the root point is a tree in its own right.
Suppose it has ¢ points and its shape is S’. Its value
must be R(t, S") + t, (since its root point has value 2).
The right branch of the root point is also a tree. It has
(N — 1 — 1) points and shape S” (say). Its value is

RN —1—1,8)~(N—1-—1)

*“ RIN,S)=1-+R(t,S)—1t—RN—1-—1,S5")
+WN—-1-0

=R(t,S)+ RN —-1—1,5")+ N
The probability that there are 7 points on the left branch
of the root point is the probability that the root point is
the (+ — 1)th point in the final order. But it is equally
probable that the root point will be anywhere in the
final order.
Hence the probability is 1/N.

O(N)
= X P(N, S)R(N, S)

S
] N—1
=y XX Z {(P(1, SYPIN — 1 —1,5")
=0 S S
[R(t,S) + RN —1 —1,8") ~ N}
, 2 N1
=Ny B 00 (1)

The Mean Deviation of the Value of the Tree
The mean deviation V(N) is given by
VAN) = U(N) — Q%N)
where U(N)
= 2 P(N, S)R¥(N, S)

ZZZ{PrS)P(Nﬁl*rS)

=0 §’
[R(1,S) - RIN —1 —1,8") + NJ*}}
1 N—1
=5 I I P.SPIN — 1 —1,5")
=0 S 8§

[R(t, S') + RAN — 1 —1, ") + N2
- 2NR(1, S') - 2NR(N — 1 —1,)
+ 2R(t, S)R(N —1 — 1, 8]
N—1
— v I 3P0 SR, S) + UN — 1 —1)
t=0 §
£ N2+ 2NR(t, S') — 2NO(N — 1 — 1)
2R, SHON — 1 — D]}
1 Nt
= § I (U0 + UN =1 = 1) + N + 2NQ()
LANQIY — 1 — 1) + 200 — 1~ 1]

N—1

_ N4 _]5 X [UG) + 2NO()

+ QWQON — 1 — 1]
= 2NQ(N) — N2

N—1
+ 73 S [UnFo0eN-1-0] @)

VAN [U(1) + O(DO(N — 1 —1)]

2N
NE
— [Q(N) — NJ%.

Determination of Q(N)

2.\'—1
From (1), Q(N) =N — Z‘. o)

Hence QN —1) = (N — ((N) = E o)
NO(N)—(N—DQN —1)=@2N —1)+-20(N — 1)
ON) QN —1) 2N —1 30
N1 N ~ NN+ N1 N

Q(N) o) i__”i‘ _gi b
N+1 2 N+1 S+l 2
N 1
Hence O(N)=2(N + 1) ;l }—3N.

N]
The formal series for 3] y obtained by the Euler—

=1
Maclaurin formula is

I
logN+y = 8= X 53

(where y is Euler’s constant and the B; are the Bernoulli

Numbers)

y = 0-57721566 approximately.
O(N) =2(N + 1)

1 I |
(1ogeN + v+ — e+ ot -) —3N. (3)
Table 1
N O(N) V(N)
10 34 4
20 91 10
30 158 16
40 231 2
50 309 28
100 748 59
150 1,238 91
200 1,763 123
250 2313 155

86

¥20¢ Jequiedag ¢| uo 1sanb Aq 66/ 70S/¥8/2/S/elo1ue/|ulwoo/woo dno-olwepeoe//:sdiy wouy papeojumoq

Trees, Forests and Rearranging

The Evaluation of the Mean and Variance

Great care must be taken in computing Q(N) and
V(N) since the recurrence relations derived from (1)
and (2) are unstable. The values given in Table 1 were
evaluated ‘“‘double-length” on the computer. The
accuracy of the values of Q(N) was checked by com-
paring them with the values obtained from the asymp-
totic expansion (3). It will be seen that the variance is
small compared to the mean.

Time taken by the Method

Consider first a machine of the Pegasus type, with a
magnetic drum main store and a small high-speed com-
puting store. Assume that a complete item of data can
be held in the computing store and that it can be trans-
ferred to and from the drum by one or more block
transfers. It may be assumed that, for the second and
subsequent block transfers, the drum is in the correct
position so that no waiting time is involved. Each com-
parison causes the key and the left or right address to
be brought into the computing store. When each item
is placed in the main store, it is given a back address, and
an address which is stored with another item is adjusted
to connect the new item on to the tree. This causes 2N
transfers. As there are on average Q(N) — N com-
parisons, the total number of transfers needed is
O(N) -+ N. As seen previously 3N transfers are
necessary to pick the data off the tree. Therefore, in all,
the number of transfers necessary for the complete
process is Q(N) - 4N = (N + 1) log, N + (1 - y) N =
1-4N -+ 1)log, N — (1 + y)N approximately. A
merging process requires 2N [log, N] transfers.

On a machine whose main store is made of magnetic
cores, a comparison of the two methods must not be
made simply on the number of transfers to and from the
store. The number of times the inner loops are obeyed
by the two programs must be examined, and the com-
parative lengths of these loops estimated. For tree
sorting there are two inner loops. The first is used
during the growth of the tree and is obeyed Q(N) — N
times. The second is used during the picking-off process
and is used 2N times. Let us suppose that « is the time
taken to make a comparison, B the time taken to move
a complete item of data from one location or set of
locations in the machine to another place, A the time
taken by the administrative orders necessary to connect
a new item on to the tree, and A* the average time taken
by the picking-off routine to find the next item. Ignoring
the time taken initially to place all the data in the store,
which is the same for all methods, the total time taken
by the tree method is therefore approximately

a[Q(N) — N]+ NA + 2N A%
The time taken by merging is

(« + B)N [log, N].

87

It is sufficient to compare
1-4aN [log, N] with (o + B)N log, N.

Hence, provided « << 2-58, the tree method will be the
faster.

Retrieval of Information

Trees may be used to hold data in the main store of a
machine so as to facilitate the retrieval of information
belonging to a given key. When this is done an average
of QO(N)/N =~ log, N comparisons are required to
identify each item.

A Forest of Trees

It has already been mentioned that, when an item is
placed on a tree, it can be placed anywhere in the store
not already used to hold an item of the tree. Both for the
growth of the tree and for the picking of items off the
tree, the address of the root point is the only parameter
necessary to start the process. All other addresses
required are already stored on the tree. Hence it is
possible to have two trees growing in the machine at
the same time without interfering with each other. The
trees have distinct root points. Each location in the
machine is allotted, as the trees grow, to either tree as
required. When an item is to be placed on a tree, it is
first examined to see to which tree it belongs. The
appropriate root point is then selected to start the
comparisons.

After the necessary comparisons have been made,
the new item is placed in the next vacant location in the
machine and is linked through its back address to the
correct tree. Not just two but any number of trees may
be used provided that each tree has a location in the
machine designated for its root point. To pick off the
items the same routine is used. It is re-entered for
every tree, starting at each root point. The advantage
of this multi-tree or forest technique is that the value of
two trees is less than the value of a tree equal in size to
the two trees put together. The selection of the correct
tree for each item may be done by splitting the range of
the key into areas and allotting a tree to each area. It
will be noticed that this selection is equivalent to one
pass of a distribution sort, but no estimate is needed for
the size of the pockets.

Theoretically, as many trees as possible should be
used in the forest, but if any tree is void (i.e. it does not
have any items on it) the space allotted to its root point
is wasted. In practice, the optimum number depends
on the distribution of the keys over their possible range,
and how much is known about it. In the limit, when
every key defines a tree, the method degenerates into a
pigeon-hole sort. The method is ideally suited for cases
where the data has to be arranged in sequence within a
number of groups and the criterion for the determination
of the groups is different from the criterion to be used
for the ordering of the data within those groups. These,

¥20¢ Jequiedag ¢| uo 1sanb Aq 66/ 70S/¥8/2/S/elo1ue/|ulwoo/woo dno-olwepeoe//:sdiy wouy papeojumoq

Trees, Forests and Rearranging

indeed, were the conditions for which this technique was
developed.

The data referred to students in the University of
Leeds (see Windley, Kay and Rowland-Jones, 1960) and
it was required to compile a list of students arranged
alphabetically under courses. The data was first
examined for the student’s course; this was used to
select a tree, and the comparisons were then made on
the student’s name.

Trees and Sorting

Trees can be used very effectively for sorting. By
sorting is meant the accumulating of items with the
same key. To use a pigeon-hole sort it is necessary to
be able to assign a location in the machine to every
possible key over its complete range. In tree sorting,
space is only required for the accumulated items
actually encountered during the sort, and for three block
addresses for cach distinct key. By marking the keys
which are known to occur most often, and assigning a
separate tree to all marked keys, it is possible to utilize
the speed of pigeon-hole sorting to deal with the most
frequent keys. This may introduce a considerable gain
in speed in applications to accounting where some
accounts are much more active than others. In tree
sorting, items with the same key are accumulated as
they are placed on the tree. Thus at no time is it
necessary to store the same key twice. This is a great
improvement on sorting by merging, where the items
are only gradually accumulated.

References

It is also possible to use trees, in a slightly different
form, to generate the best strategies for other sorting
and rearranging methods. These techniques are dis-
cussed in a paper by Burge (Burge, 1958).

Conclusion

The method of rearrangement by trees was first con-
sidered by the author in order to produce the longest
possible sequences of data inside a computer. It has
been shown that, given random initial sequence, the
method is, on average, faster than rearrangement by
merging. The method has been used successfully in
two programs relating to student registration, mentioned
above. First it was used to rearrange the data into
various orders as required by the University office. This
program only used 6°, of the store as working space.
Secondly it was used to count the number of students
attending each course at a time when the data was not
rearranged in order under courses. Pigeon-hole sorting
could not be used for this because of the large number
of possible course codes, only a few of which were
assigned to actual courses. This use of the method as a
counter-sorter may well have applications in the market-
research field, where it is required to compute a weighted
count, under a number of different headings, from a large
amount of data. By using a forest of trees it will be
possible to perform several counts at the same pass of
the complete data. This technique is useful where the
coding of the main data is such that a pigeon-hole sort
cannot be used because of the wide range of possible
keys.

BeLr, D. A. (1958). *“The Principles of Sorting,”” The Computer Journal, Vol. 1, p. 71.
BURGE, W. H. (1958). **Sorting, Trees and Measures of Order,” Information and Control, Vol. 1, p. 181.
DoucLas, A. S. (1959). “Techniques for the Recording of, and Reference to Data in a Computer,” The Compuier Journal,

Vol. 2, p. 1.
FrIEND, E. H. (1956).
WinpLEY, P. F., KAy, L. F., and RowLAND-JONES, A. (1960).

Journal, Vol. 3, p. 15.

88

“Sorting on Electronic Computer Systems,” J. Assoc. Comp. Mach., Vol. 3, p. 134.
“Data Processing in University Administration,”

The Computer

¥20¢ Jequiedag ¢| uo 1sanb Aq 66/ 70S/¥8/2/S/elo1ue/|ulwoo/woo dno-olwepeoe//:sdiy wouy papeojumoq

