O0F9809

First Edition (May 1988)

The following paragraph does not apply to the United Kingdom or any country where
such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not
apply to you.

This publication could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the publication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced
in your country. Such references or information must not be construed to mean that
IBM intends to announce such IBM products, programming, or services in your country.

THE PUBLICATION OF THE INFORMATION CONTAINED HEREIN IS NOT INTENDED TO
AND DOES NOT CONVEY ANY RIGHTS OR LICENSES, EXPRESS OR IMPLIED, UNDER
ANY IBM PATENTS, COPYRIGHTS, TRADEMARKS, MASK WORKS OR ANY OTHER
INTELLECTUAL PROPERTY RIGHTS.

Requests for copies of this publication and for technical information about IBM
products should be made to your IBM Authorized Dealer or your IBM Marketing
Representative.

Personal System/2 is a registered trademark of the International Business Machines
Corporation.

© Copyright International Business Machines Corporation 1988. All rights reserved.
No part of this work may be reproduced or distributed in any form or by any means
without prior permission in writing from the IBM Corporation.

Preface

This technical reference provides hardware and software interface
information specifically for IBM Personal System/2 products. This
manual contains both a PS/2™ family overview and system-specific
information, and should be used with the IBM Personal System/2 and
Personal Computer BIOS Interface Technical Reference.

This manual is divided into the following:

“Micro Channel™ Architecture” describes the Micro Channel
signals, timing, electrical characteristics, level-sensitive
interrupts, and multidevice arbitration.

“Programmable Option Select” describes adapter setup, system
configuration utilities, and adapter description files.

“Micro Channel Adapter Design” provides information such as
adapter dimensions, power requirements, and design guidelines.

“Microprocessors and Instruction Sets” describes the various
processors used in the Personal System/2 family. Also included
is a quick reference for microprocessor assembly instruction
sets.

“System Board 1/0 Controllers” describes the input and output
interfaces of the system board controllers.

“Keyboards (101- and 102-Key)” has layouts of the 101- and
102-key keyboards. Keyboard scan-code sets and keyboard
specifications are also provided.

“Characters and Keystrokes” supplies the decimal and
hexadecimal values for ASCII characters.

“Power Supply” provides the electrical input/output specifications
and describes the theory of operations.

Micro Channel and PS/2 are trademarks of the International Business
Machines Corporation.

“Compatibility” provides hardware and software information to
take into consideration, and provides suggestions to aid you in
developing your programs.

System-specific information concerning hardware implementation
and performance is also included.

Note: Information added to the system-specific area of this
manual may have new information about subjects covered
in other parts of this manual. Refer to the system-specific
area for information that could affect your hardware or
software development decisions.

A Bibliography is also provided.

Technical Reference Library

The technical reference library is intended for those who develop
hardware and software products for IBM PS/2 systems and who
understand computer architecture and programming concepts.

The technical reference library for Personal System/2 products that
incorporate the Micro Channel architecture consists of the following:

* |BM Personal System/2 Hardware Interface Technical Reference:
provides information to support the functions and architecture
common to multiple models of the PS/2 family. In this manual,
Type 1 refers to the initial hardware design level. Subsequent
levels are designated as Type 2, Type 3, and so on.

e System-specific technical references: provide information
concerning hardware implementation and performance for a
given model.

* |BM Personal System/2 and Personal Computer BIOS Interface
Technical Reference: provides BIOS and Advanced BIOS
interface information.

e Option and Adapter Technical References: provide hardware and
programming information about individual PS/2 options and
adapters.

Suggested Reading:

e BASIC for the IBM Personal Computer

¢ IBM Disk Operating System (DOS)

e IBM Operating System/2™

* Macro Assembler for the IBM Personal Computer

* |BM Personal System/2 and Personal Computer BIOS Interface
Technical Reference.

Additional publications relating to the information contained in this
manual are listed in the Bibliography.

Warning: In this technical reference, the term “Reserved” is used to
describe certain signals, bits, and registers. Use of reserved areas
can cause compatibility problems, loss of data, or permanent damage
to the hardware.

When modifying a register, the state of the reserved bits must be
preserved. When possible, read the register first and change only the
bits required.

Operating System/2 is a trademark of the International Business
Machines Corporation.

Notes:

iv

Micro Channel Architecture

Description e 1
Channel Definition 2
Signal Descriptions (16-Bit) 4
Signal Descriptions (32-Bit) 11
Signal Descriptions (Matched-Memory) 12
Signal Descriptions (Auxiliary Video Extension) 13
Micro Channel Connector (16-Bit) 15
Micro Channel Connector (Auxiliary Video Extension) 17
Micro Channel Connector (32-Bit Section) 18
Micro Channel Connector (Matched-Memory Extension) 19
Channel Signal Groups (16-Bit, 32-Bit, and Matched-Memory) 19
Channel Signal Groups (Auxiliary Video Extension) 22
BusOwnership 23
Central Arbitration Control Point 23
Local Arbiters 25
BurstMode 28
Preemption 29
Programmable Fairness and the Inactive State 30
Arbitration Bus Priority Assignments 30
Channel Support 32
Address Bus Translator 32
DataBusSteering 32
Level-Sensitive Interrupt Sharing 34
Micro Channel Critical Timing Parameters 36
Basic-TransferCycle 36
Simplified Basic-TransferCycle 36
I/0 and MemoryCycle 39
DefaultCycle 40
Default Cycle Return Signals 42
Synchronous Special Case of Extended Cycle 43
Synchronous-Extended Cycle (300 Nanoseconds Minimum -
SpecialCase) 44
Asynchronous-Extended Cycle (General Case) 47
Asynchronous-Extended Cycle (=300 Nanoseconds Minimum
-GeneralCase) 48
DMATIimIng 50
First Cycle AfterGrant 50
Single DMA Transfer (DMA Controller Controlled) 52
Burst DMA Transfer (DMA Controller Terminated) 54

Micro Channel Architecture |

Burst DMA Transfer (DMA Slave Terminated - Default Cycle
200 Nanoseconds)
Burst DMA Transfer (DMA Slave Terminated -
Synchronous-Extended Cycle 300 Nanoseconds)
Burst DMA Transfer (DMA Slave Terminated -
Asynchronous-Extended Cycle >300 Nanoseconds)
Arbitration Timing
ArbitrationCycle
Exiting from Inactive State
Configuration Timing
Additional Channel Timings
Auxiliary Video Extension Timing

Micro Channel Architecture

Figures

-l

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22,

23.
24.
25.
26.
27.

28.
29.

Micro Channel Connectors 3
I/0 and Memory TransferControls 6
Channel Connector Voltage and Signal Assignments (8-Bit
Section) 16
Channel Connector Voltage and Signal Assignments (16-Bit
Section) 17
Auxiliary Video Extension 17
Channel Connector Voltage and Signal Assignments (32-Bit
Section) e 18
Channel Connector Voltage and Signal Assignments
(Matched-Memory Extension) 19
Driver/Receiver Requirements and Options 20
Signal Driver Types i 21
Distributed Arbitration Block Diagram 25
Local ArbiterExample 27
BurstMode Timing 28
Preempt Timing 29
Arbitration Bus Priority Assignments for Compatibility ... 31
SteeringControl 32
Data Bus Steering Implementation 33
Typical Adapter Interrupt Sharing Implementation 34
Interrupt SharingSequence 35
Overview of the Basic-TransferCycle 38

Default I/0 and Memory Cycle (200 Nanoseconds Minimum) 41
Default Cycle Return Signals (200 Nanoseconds Minimum) 42
Timing Sequence for the Synchronous Special Case of

ExtendedCycle 43
Synchronous-Extended Cycle (300 Nanoseconds Minimum -
SpecialCase) 45
Timing Sequence for the Asynchronous-Extended Cycle
(GeneralCase) 47
Asynchronous-Extended Cycle (=300 Nanoseconds

Minimum - GeneralCase) 49
First Cycle AfterGrant 51
Single DMA Transfer (DMA Controlier Controlled) 53
Burst DMA Transfer (DMA Controller Terminated) 55
Burst DMA Transfer (DMA Slave Terminated - Default Cycle

200 Nanoseconds) 57

Micro Channel Architecture il

30.

31.

32.
33.
34.
35.

iv

Burst DMA Transfer (DMA Slave Terminated -

Synchronous-Extended Cycle 300 Nanoseconds) 59
Burst DMA Transfer (DMA Slave Terminated -

Asynchronous-Extended Cycle >300 Nanoseconds) 61
ArbitrationCycle 63
SetupCycle 65
Additional Channel Timings 66
Auxiliary Video Connector Timing (DAC Signals) 67

Micro Channel Architecture

Description

The Micro Channel architecture consists of an address bus, a data
bus, a transfer control bus, an arbitration bus, and multiple support
signals. It uses synchronous and asynchronous procedures for
control and data transfer between memory, 1/0 devices, and the
controlling master. The controlling master can be a DMA controller,
the system microprocessor, or a bus master. See “Bus Ownership”
on page 23 for more information about controlling masters.

The following are characteristics of the Micro Channel architecture:

An I/0 address width of 16 bits allows 8-, 16-, or 32-bit I/0
transfers within a 64KB range. A memory address width of 24
and 32 bits allows 8-, 16-, 24-, or 32-bit memory transfers within
16MB and 4GB ranges respectively (KB equals 1024 bytes;

MB equals 1,048,576 bytes; GB equals 1,073,741,824 bytes).

Support of a central arbitration control point that enables up to 15
devices and the system microprocessor to arbitrate for control of
the channel.

A direct memory access (DMA) procedure that supports multiple
DMA channels with burst capability.

Level-sensitive interrupts with interrupt sharing on all levels.

Programmable Option Select (POS) registers that replace
hardware jumpers and switches. These registers allow flexibility
during system configuration.

Channel connector extensions that support the growth of
additional channel features.

Improved electromagnetic compatibility.

Error reporting.

Micro Channel Architecture 1

Channel Definition

The channel provides all signal, power, and ground signals to
adapters through 50-mil channel connectors.

The channel provides two basic types of connectors:

¢ 16-bit, which support 8- and 16-bit operations
¢ 32-bit, which support 8-, 16-, 24-, and 32-bit operations.

Pins 01 through 45 support 8-bit operations. Pins 46 and 47 are keys.
Pins 48 through 58 provide additional power and signals to support
16-bit operations. Pins 59 through 89 are used with pins 01 through
58 to support 32-bit operations and are only present on systems with
a 32-bit system microprocessor.

Side A of each connector is offset from side B by 2 pins, and every
fourth pin on either side of each connector is at ac ground. This
places each signal within 2.54 millimeters (0.1 inch) of a ground and
minimizes current loop electromagnetic interference (EMI). The
50-mil connector reduces the required insertion force and matches
the line spacing of surface mount technology.

Extensions to the basic 16- and 32-bit connectors are implemented on
a system-by-system basis. Refer to the system-specific technical
references for additions to or deviations from the information
presented in this section.

Note: Adapter designs should not extend the card-edge connector
beyond the basic 16- or 32-bit connector unless the signals
provided by the extension are used by the adapter. Adapters
for the Micro Channel architecture have special design criteria.
See “Micro Channel Adapter Design.”

2 Micro Channel Architecture, Channel Definition

The following is a diagram of the two basic types of channel

connectors with optional extensions.

V10
Video Extension
(Optional) Vi
— —07 -

8-Bit
Section

16-Bit
Section

[45]

48]

| 58]
16-Bit Connector with Video Extension -—T

32-Bit Connector with Matched Memory ———p

Figure 1. Micro Channel Connectors

Warning: Any signals shown or described as “Reserved” should not

M4
M1

58 3|5

11

Matched

— Memory

Extension
(Optional)

| 8-Bit
Section

| 16-Bit
Section

| _ 32-Bit
Section

be driven or received. These signals are reserved to allow

compatibility with future implementations of the channel interface.
Serious compatibility problems, loss of data, or permanent damage
can result to features or the system if these signals are misused.

Micro Channel Architecture, Channel Definition

3

Signal Descriptions (16-Bit)

All of the logic signal lines are transistor-transistor logic (TTL)
compatible. The following are the signals available on the channel.
Timing information for the signals begins on page 36.

Reserved: Any signals shown or described as “Reserved” should not
be driven or received. These signals are reserved to allow
compatibility with future implementations of the channel interface.
Serious compatibility problems, loss of data, or permanent damage
can result to features or the system if these signals are misused.

A0 — A23: Address Bits 0 through 23: These lines are used to
address memory and I/O slaves attached to the channel. Ao is the
least-significant bit (LSB) and A23 is the most-significant bit (MSB).
These 24 address lines allow access of up to 16MB of memory. Only
the lower 16 address lines (A0 — A15) are for I/O operations, and all 16
lines must be decoded by the I/0 slave. Ao through A23 are generated
by the controlling master. Valid addresses generated by the
controlling master are unlatched on the channel and, if required,
must be latched by the slaves using either the leading or trailing edge
of the ‘-address decode latch’ signal (-ADL) or the leading edge of the
‘command’ signal (-cMD). Ao through A23 must be driven with tri-state
drivers.

DO — D15: Data Bits 0 through 15: These lines provide data bus bits
0 through 7 (low byte) and 8 through 15 (high byte) for the controlling
master and slaves. Do is the LSB and p15 the MSB. All 8-bit slaves on
the channel must use po through D7 to communicate with the
controlling master. During read cycles, data is valid on these lines
after the leading edge but before the trailing edge of -cMD, and must
remain valid until after the trailing edge of -cMD. However, during
write cycles, data is valid as long as -CMD is active. Do through D15
must be driven with tri-state drivers.

-ADL: -Address Decode Latch: This line, driven by the controlling
master, is provided as a convenient way for the slave to latch valid
addresses and status bits. This signal can be used by slaves to latch
the address from the bus. -ADL is not active during matched-memory
cycles. -ADL is driven with a tri-state driver.

4 Micro Channel Architecture, Channel Definition

-CD DS 16 (n): -Card Data Size 16: This line is driven by 16-bit and
32-bit memory, 1/0, or DMA slaves to provide an indication on the
channel of a 16-bit or 32-bit data port at the location addressed. The
(n) indicates this signal line is unique to each channel connector (one
independent signal line per connector). This signal is unlatched and
derived as a valid address decode. All system logic receives this
signal to support communication with 16- and 32-bit slaves. -CD DS 16
is not driven by 8-bit slaves. All 16- and 32-bit slaves must drive this
signal. -CD DS 16 is driven with a totem-pole driver.

-DS 16 RTN: -Data Size 16 Return: This output signal is a negative
OR of the -cD Ds 16 signal from each channel connector. If any device
drives its -CD DS 16 active, this output is active. This signal is provided
to allow the controlling master to monitor the data size information.
-DS 16 RTN must be driven with a bus driver.

-SBHE: -System Byte High Enable: This line indicates and enables
transfer of data on the high byte of the data bus (b8 — D15), and is used
with Ao to distinguish between high-byte transfers (D8 — D15) and
low-byte transfers (Do — D7). All 16-bit slaves decode this line, but
8-bit slaves do not. -sBHE is driven with a tri-state driver.

MADE 24: Memory Address Enable 24: This line indicates when an
extended address is used on the bus. If a memory cycle is in
progress and MADE 24 is inactive, an extended address greater than
16MB is being presented; if MADE 24 is active, an unextended address
less than or equal to 16MB is being presented. This line is driven by
the controlling master and decoded by all memory slaves, regardless
of their address space size. MADE 24 is driven with a tri-state driver.

M/-10: Memory/-Input Output: This signal distinguishes a memory
cycle from an 1/0 cycle. When this signal is high, a memory cycle is
in progress. When M/-10 is low, an 1/0O cycle is in progress. M/-I0 is
driven with a tri-state driver.

-§0, -S1: -Status Bits 0 and 1: These lines indicate the start of a
channel cycle and also define the type of channel cycle. When used
with M/-10, memory read/write operations are distinguished from 1/0
read/write operations. These signals are latched by the slave, as
required, using the leading edge of -cMD or the trailing edge of -ADL.
-s0 and -s1 are driven with a tri-state driver.

Micro Channel Architecture, Channel Definition 5

Data is moved to or from the bus based on -cMD and a latched decode
of the address, the status lines (-so exclusive or -s1), and M/-10.

Slaves must support a full decode of -so and -s1. The following figure
shows the proper states of M/-10, -S0, and -s1 in decoding I/0 and
memory read/write commands.

M/-10 -S0 -S$1 Function

0 0 0 Reserved

0 0 1 1/0 Write Command

0 1 0 1/0 Read Command

0 1 1 Reserved

1 0 0 Reserved

1 0 1 Memory Write Command
1 1 0 Memory Read Command
1 1 1 Reserved

Figure 2. I/0 and Memory Transfer Controls

An I/0 Write command instructs an 1/0 slave to store the data on the
data bus. The data must be valid on the bus from the leading edge of
-cMD and must be held on the bus until after -cMD goes inactive.
Addresses on the bus must be valid before -so goes active.

An I/0 Read command instructs an |/O slave to drive its data onto the
data bus. The data must be placed on the bus following the leading
edge of -cMD, must be valid before the trailing edge of -cMD, and must
be held on the bus until -cMD goes inactive. Addresses on the bus
must be valid before -s1 goes active.

A memory Write command instructs the memory to read the data on
the data bus. The data must be valid on the bus from the leading
edge of -cMD and must be held on the bus until after -cMD goes
inactive. Addresses on the bus must be valid before -so goes active.

A memory Read command instructs the memory to drive its data onto
the data bus. The data must be placed on the bus following.the
leading edge of -cMD. The data must be valid before the trailing edge
of -cMD, and must be held on the bus until -cMD goes inactive.
Addresses on the bus must be valid before -s1 goes active.

6 Micro Channel Architecture, Channel Definition

-CMD: -Command: This signal is used to define when data is valid
on the data bus. The trailing edge of this signal indicates the end of
the bus cycle. This signal indicates to the slave how long data is
valid on the bus. During write operations, the data is valid on the bus
as long as -CMD is active. During read operations, the data is valid on
the bus between the leading and trailing edges of -cMD, and must be
held on the bus until after -cMD goes inactive. This signal can be
used by the slaves to latch the address on the bus. Latched status
lines gated by -cMD provide the timing control of valid data. Slaves
should use transparent latches to latch address and status
information with the leading edge of -CMD. -CMD is not active during
matched-memory cycles. It must be driven with a tri-state driver.

-CD SFDBK (n): -Card Selected Feedback: When the controlling
master addresses a memory slave or an I/O slave, the addressed
slave drives -CD SFDBK active as a positive acknowledgment of its
presence at the address specified. The (n) indicates this signal line is
unique to each channel connector (one independent signal line per
connector). This signal is unlatched by any slave with a valid select
decode, and is driven by any slave selected by any select mechanism
except -cD SETUP. The slave does not drive -CD SFDBK during the
configuration cycle. -CD SFDBK is driven with a totem-pole driver.

Note: Memory supporting diagnostic software must not drive
-cD SFDBK during the diagnostic operation.

CD CHRDY (n): Channel Ready: This line, normally active (ready), is
pulled inactive (not ready) by a memory or I/0 slave to allow
additional time to complete a channel operation. The (n) indicates
this signal line is unique to each channel connector (one independent
signal line per connector). During a read operation, a slave ensures
that data will be valid on the data bus within the time specified after
releasing the line to a ready state. The slave also holds the data long
enough for the controlling master to sample. A slave may also use
this line during a write operation if more time is needed to store the
data from the bus. This signal is derived with a valid address decode
ANDed with status. cp CHRDY is driven with a totem-pole driver.

CHRDYRTN: Channel Ready Return: This output signal is a positive
AND of the cD CHRDY signals. If all devices drive cD CHRDY active, this
output is active. It is provided to allow the controlling master to
monitor the ready information. CHRDYRTN must be driven with a bus
driver.

Micro Channel Architecture, Channel Definition 7

ARBO — ARB3: Arbitration Bus Priority Levels: These lines
comprise the arbitration bus and are used to present priority levels
for participants seeking control of the bus. ARB0 through ARB3, the
least-significant through most-significant bits respectively, support up
to 16 priority levels.

The highest hexadecimal value of the arbitration bus (hex F) has the
lowest priority, and the lowest value (hex 0) has the highest priority.
A participant is allowed to change the state of the arbitration bus only
immediately after the rising edge of ARB/-GNT. All participants monitor
the arbitration bus and the lower priority participants withdraw their
priority levels by not activating less-significant arbitration bits.

The hexadecimal code of the highest priority requester is valid on the
arbitration bus after a settling time. After the channel is granted to a
requester, the highest priority participant continues to drive its
priority lines. These bidirectional lines are active high and must be
driven with open collector drivers.

ARB/-GNT: Arbitrate/-Grant: When high, this signal indicates an
arbitration cycle is in process. When low, it is the acknowledgment
from the central arbitration control point to an arbitrating bus
participant (local arbiter) and the DMA controller that channel control
has been granted. This signal is driven high by the central arbitration
control point within a specified time after -so, -s1, -BURST, and -CMD
become inactive. The negative-to-positive transition of ARB/-GNT
initiates an arbitration cycle; the positive-to-negative transition
terminates the arbitration cycle. Only the central arbitration control
point activates and deactivates this line. This signal must be used by
all local arbiters to gate their address data and transfer control bus
drivers off during arbitration cycles. ARB/-GNT is driven with a bus
driver.

-PREEMPT: -Preempt: This signal is used by arbitrating bus
participants (local arbiters) to request use of the channel through
arbitration. Any local arbiter with a channel request activates
-PREEMPT and causes an arbitration cycle to occur. A local arbiter
removes its -PREEMPT upon being granted the channel. This
bidirectional line must be driven with an open collector driver.

8 Micro Channel Architecture, Channel Definition

-BURST: -Burst: This signal indicates to the central arbitration
control point the extended use of the channel for transferring a block
of data. This type of data transfer is called a burst cycle. This line is
shared by all local arbiters. -BURST is driven active by the local
arbiter after being granted the channel. The local arbiter must
deactivate -BURST during the last transfer cycle. -BURST must be
driven with an open collector driver.

-TC: -Terminal Count: This line provides a pulse during a Read or
Write command to indicate that the terminal count of the current DMA
channel has been reached. This indicates to the DMA slave the last
cycle to be performed of a preprogrammed DMA block transfer. -TC is
available on the channel only during DMA operations. It is driven
with a tri-state driver by the DMA controller.

-IRQ 3-7, -IRQ 9—-12, and -IRQ 14—15: -Interrupt Request: These
lines are used to signal that a device requires attention. They are
prioritized with -IRa 9 having the highest priority and -Ira 7 having the
lowest priority. The effective interrupt priority sequence is -iRQ
(9—12, 14, 15, 3—7). An interrupt request is generated when a slave
drives one of the ‘interrupt request’ signals low. The polarity of
‘interrupt request’ signals makes it possible for muiltiple slaves to
share the same interrupt level. This is called interrupt sharing.
These lines must be driven with an open collector driver.

-CD SETUP (n): -Card Setup: This signal is driven by system logic to
individually select channel connectors during system configuration
and error-recovery procedures. The (n) indicates this signal line is
unique to each channel connector (one independent signal line per
connector). When this signal is activated, a specific channel
connector is selected and access to the adapter’s configuration data
space is obtained. The ID and configuration data can be obtained by
an 1/0 read operation; the configuration data is stored by an I/O write
operation. Each channel connector has a unique -cp SETUP. This line
is driven with a totem-pole driver.

-CHCK: -Channel Check: This line is used to indicate a serious error
(such as a parity error) that threatens continued operation of the
system. -CHcK is driven active to indicate the error condition and
must remain active until the -CHCK interrupt handler resets it. -CHCK is
driven with an open collector driver to allow sharing.

Micro Channel Architecture, Channel Definition 9

AUDIO: Audio Sum Node: This line is an audio voltage sum node. It
is used to drive audio signals from an adapter to the system audio
output, or to transfer audio signals between adapters. The frequency
response of the audio line is 50 Hz to 10 kHz + 3 dB. The maximum
signal amplitude is 2.5 Vac peak-to-peak, at a dc offset of 0 + 50
millivolts. The noise level is limited to a maximum of 50 millivolts
peak-to-peak.

AUDIO GND: Audio Ground: This is a separate ground return for the
audio subsystem.

OSC: Oscillator: This line is a high-speed clock with a frequency of
14.31818 MHz + 0.01%. The high-level pulse width (more than 2.3
Vdc) and the low-level pulse width (less than 0.8 Vdc) must not be
less than 20 nanoseconds each.

CHRESET: Channel Reset: This signal is generated by the system
logic to reset or initialize all adapters at power on or during a low line
voltage condition. During a power-on sequence, CHRESET is active for
a specified minimum time. The system can also activate this signal
under program control. CHRESET is driven with a bus driver.

-REFRESH: -Refresh: This line is driven by the system logic and is
used to indicate that a memory refresh operation is in progress.
While this line is active, a memory read operation occurs. The
address lines contain the memory locations being refreshed. Nine
lines, A0 through A8, are activated. -REFRESH timing may be
inconsistent and must not be used as a timing mechanism. -REFRESH
is driven with a tri-state driver.

10 Micro Channel Architecture, Channel Definition

Signal Descriptions (32-Bit)

A24 — A31: Address Bits 24 through 31: These lines are used with Ao
through A23 to address memory attached to the channel. Ao is the LSB
and A31 is the MSB. These 32 address lines allow access of up to
4GB of memory. Only the lower 16 address lines (A0 through A15) are
used for I/O operations. A24 through A31 are generated by the
controlling master. Valid addresses generated by the controlling
master are unlatched on the channel and, if required, must be latched
by the slaves using either the leading or trailing edge of -ADL or the
leading edge of -cMD. A0 through A31 must be driven with tri-state
drivers.

-BE0 — -BE3: -Byte Enable 0 through 3: These lines are used during
data transfers with 32-bit slaves to indicate which data bytes will be
placed on the bus. Data transfers of 8, 16, 24, or 32 contiguous bits
are controlled by -Beo through -BE3 during transfers involving 32-bit
slaves only. These lines are driven by the controlling master when
TR 32 is inactive, and by the Central Translator Logic (for those
operations involving a 16-bit master with a 32-bit siave) when TR32 is
active. These lines are unlatched on the bus and, if required, must be
latched by 32-bit slaves. -BEo through -BE3 are driven with tri-state
drivers.

D16 — D31: Data Bits 16 through 31: These lines are used with Do
through D15 to provide data-bus bits to the controlling master and
slaves. Do is the LSB and p31 the MSB. All 32-bit transfers from the
controlling master to 8-bit slaves are converted to four 8-bit transfers,
and all are transmitted on lines Do through pD7. All 32-bit transfers
from the controlling master to 16-bit slaves are converted to two
16-bit transfers, and all are transmitted on lines Do through D1s.
During read cycles, data is valid on these lines after the leading edge
of -cMD but before the trailing edge of -cMD. However, during write
cycles, data is valid as long as -cMD is active. po through D31 must be
driven with tri-state drivers.

-CD DS 32 (n): -Card Data Size 32: This line is driven by 32-bit slaves
to provide an indication on the bus of a 32-bit data port at the location
addressed. The (n) indicates this signal line is unique to a channel
connector position (one independent signal per connector). -CD Ds 32
is unlatched and derived from a valid address decode. All 32-bit

Micro Channel Architecture, Channel Definition 11

slaves must drive this signal. -CD Ds 32 is inactive for an 8- or 16-bit
data port. -CD Ds 32 must be driven with a totem-pole driver.

-DS 32 RTN: -Data Size 32 Return: This output signal is a negative
OR of the -cD Ds 32 signal from each channel connector. If any device
drives its -CD Ds 32 active, then this output is active. This signal is
provided to allow controlling masters to monitor data size
information. -Ds 32 RTN must be driven with a bus driver.

TR 32: Translate 32: This line is driven inactive by 32-bit controlling
masters and received by the Central Translator Logic. TR 32 can also
be received by any 32-bit slave. When TR 32 is inactive, a 32-bit
controlling master drives -BE0 through -BE3. When TR 32 is active, the
Central Translator Logic drives -BE0 through -BE3. TR 32 must be driven
by a tri-state driver. See “Channel Support” on page 32 for more
information about Central Translator Logic.

Signal Descriptions (Matched-Memory)

Matched memory is a function that allows enhanced data transfer
capabilities between the system microprocessor and its
channel-resident memory. Matched memory is not supported by all
systems. The following signal definitions are system specific and
may not apply to all systems that support matched-memory cycles.
For more information, refer to the system-specific technical reference
for the system you are dealing with.

-MMC: -Matched Memory Cycle: This signal is driven by the system
logic to indicate to the channel slaves that the system microprocessor
is the controlling master and is able to run a matched-memory cycle.

-MMCR: -Matched Memory Cycle Request: This is a bus cycle
control-input signal. -MMCR is driven by a 16- or 32-bit channel slave
to request the faster cycle available on the system bus.

-MMC CMD: -Matched Memory Cycle Command: This output signal
to the bus is generated for system microprocessor bus cycles only.
-MmMmc cMD defines when data is valid on the bus during a
matched-memory cycle.

Note: Adapter designs should not extend the card-edge connector
beyond the basic 16- or 32-bit connector unless the signals
provided by the extension are used by the adapter. Adapters

12 Micro Channel Architecture, Channel Definition

for the Micro Channel architecture have special design criteria.
See “Micro Channel Adapter Design.”

Signal Descriptions (Auxiliary Video Extension)

The following are signal descriptions for the auxiliary video extension
of the channel connector.

VSYNC: Vertical Synchronization: This signal is the vertical
synchronization signal to the display. See also the ESYNC description.

HSYNC: Horizontal Synchronization: This signal is the horizontal
synchronization signal to the display. See also the ESYNC description.

BLANK: Blanking Signal: This signal is connected to the BLANK input
of the video digital-to-analog converter (DAC). When active (0 Vdc),
this signal tells the DAC to drive its analog color outputs to 0 Vdc.
See also the ESYNC description.

PO - P7: Palette Bits: These eight signals contain video information
and comprise the picture element (PEL) address inputs to the video
DAC. See also the EVIDEO description.

DCLK: Dot Clock: This signal is the PEL clock used by the DAC to
latch the digital video signals, P7 through Po. The signals are latched
into the DAC on the rising edge of DCLK.

This signal is driven through the EXTCLK input to the system board
video when DCLK is driven by the adapter. If an adapter is providing
the clock, it must also provide the video data to the DAC. See the
EDCLK description.

ESYNC: External Synchronization: This signal is the output-enable
signal for the buffer that drives BLANK, VSYNC, and HSYNC. ESYNC is tied
to +5 Vdc through a pull-up resistor. When ESYNC is high, the system
board video drives BLANK, VSYNC, and HSYNC. When ESYNC is pulled
low, the adapter drives BLANK, VSYNC, and HSYNC.

Micro Channel Architecture, Channel Definition 13

EVIDEO: External Video: This signal is the output-enable signal for
the buffer that drives P7 through Po. EVIDEO is tied to +5 Vdc through a
pull-up resistor. When EVIDEO is high, the system board video drives
p7 through Po. When it is pulled low, the adapter drives P7 through Po.

EDCLK: External Dot Clock: This signal is the output-enable signal
for the buffer that drives DCLK. EDCLK is tied to +5 Vdc through a
pull-up resistor. When EDCLK is high, the system board video is the
source of bCLK to the DAC and the adapter. When EDCLK is pulled low,
the adapter drives DCLK.

See “Video Subsystem” for more information.

14 Micro Channel Architecture, Channel Definition

Micro Channel Connector (16-Bit)

The 16-bit Micro Channel connector has two sections:

* An 8-bit section
* A 16-bit section.

A key between the two sections is provided for mechanical alignment.

The following figures show the signals and voltages assigned to the
16-bit channel connector.

Micro Channel Architecture, Micro Channel Connectors 15

Rear of the System Board

B A
AUDIO GND of | -CDSETUP
AUDIO 02 | = MADE24
GND 03 | GND
143MHzOSC —— | 04 | =00 AN
GND 05 | A10
A23 06 | A09
A22 07 | ___ +5vdc
A21 o8 | AO0B
GND 0 | AO07
A 20 10 | AO06
A 19 1M L +5vdc
A18 12 | AO05
GND B3 - A04
A17 4 000 AO03
A 16 15 L +5vde
A15 6 [A02
GND 17 | AO01
A14 18 _ _ A00
A13 19 L +12Vvdc
A12 20 | .ADL
GND 21 | -PREEMPT
-IRQ 09 2 | -BURST
-IRQ 03 28 L 12vdc
-IRQ 04 24 | ARBO00O
GND —— 25 | ARBO1
-IRQ 05 6 | ARBO2
-IRQ 06 27 | 12Vvdc
-IRQ 07 28 | ARBO03
GND —— 29 | ARB/-GNT
Reserved % | -TC
Reserved 31 | +5vdc
-CHCK 32 - .80
GND ——1 33 L st
-CMD 4 [MH-IO
CHRDYRTN 3 | —— +12vde
-CD SFDBK 8 | CDCHRDY
GND — 37 | Doo
D01 38 | DO02
D03 39 | +5Vvde
D04 40 | DO5
GND — #1 | pos
CHRESET 2 | po7
Reserved 43 | —— GND
Reserved 4 | = -DS16RTN
GND —— 45 | -REFRESH
KEY 46 KEY
7 L/

Figure 3. Channel Connector Voltage and Signal Assignments (8-Bit
Section)

16 Micro Channel Architecture, Micro Channel Connectors

The following are the signals and voltages assigned to the channel
connector 16-bit section.

KEY
D08
D09

D12
D14
D15

-IRQ 10
-IRQ 11
-IRQ 12

Rear of the System Board
A ~—r

48 +5Vdc

GND 50

52 +12 Vdc

GND 54

56 +5Vdc

GND 58

B A

KEY

D10
D11
D13

Reserved
-SBHE
-CD DS 16

-IRQ 14
-IRQ 15

Figure 4. Channel Connector Voltage and Signal Assignments (16-Bit

Section)

Micro Channel Connector (Auxiliary Video Extension)

This extension to the Micro Channel connector accommodates video
adapters that interface with the system-board video subsystem.

ESYNC
P5
P3
P2

PO

Rear of the System Board

B A

GND \'A)

v7 GND

GND V5

V3 GND

GND Vi

Channel Connector

Figure 5. Auxiliary Video Extension

VSYNC
HSYNC
BLANK

P6
EDCLK
DCLK

P7
EVIDEO

Micro Channel Architecture, Micro Channel Connectors

17

Micro Channel Connector (32-Bit Section)

This connector extends the 16-bit Micro Channel connector to
accommodate 32-bit addressing and 32-bit data transfers.

Reserved
Reserved
Reserved
Reserved

D16
D17
D18

D 22
D23
Reserved

D27
D28
D29

-BEO
-BE 1
-BE 2

TR 32
A24
A 25

A29
A 30
A31

Reserved
Reserved

59

Rear of the System Board

GND

GND

+12 vdc

GND

+5 Vdc

GND

+5 Vde

GND

+12 Vdc

GND

+5 Vde

GND

+5 Vdc

GND

A

GND

Reserved
Reserved

Reserved
Reserved
Reserved

D19

D20

D21

D24
D25
D26

D 30
D 31
Reserved

-BE3
-DS 32 RTN
-CD DS 32

A 26
A27
A28

Reserved
Reserved
Reserved

Figure 6. Channel Connector Voltage and Signal Assignments (32-Bit

Section)

18 Micro Channel Architecture, Micro Channel Connectors

Micro Channel Connector (Matched-Memory Extension)

This extension provides additional signals to accommodate
matched-memory cycles. The following figure shows a connector
with a typical set of matched-memory signals. Refer to the
system-specific technical reference for the system you are dealing
with for further information.

Rear of the System Board
B A

GND ——— M4 — — Reserved
Reserved M3 |———— -MMC CMD
-MMCR M2 GND
Reserved M{ (——— -MMC
01
02
03

N/

Channel Connector

Figure 7. Channel Connector Voltage and Signal Assignments
(Matched-Memory Extension)

Channel Signal Groups (16-Bit, 32-Bit, and
Matched-Memory)

The following figure lists digital 16-bit, 32-bit, and matched-memory
Micro Channel signals and shows what type of driver or receiver is
required to be compatible with the system board. The ‘audio’ and
‘audio ground’ signals are analog signals; for further information
about these signals refer to page 10.

Micro Channel Architecture, Micro Channel Connectors 19

A(0-23)
D(0-15)

-ADL

-CD DS 16 (n)
-DS 16 RTN
-SBHE

MADE 24
M/-10

-80,-S1

-CMD

-CD SFDBK (n)
CD CHRDY (n)
CHRDYRTN
ARB(0-3)

-BURST

-PREEMPT
ARB/-GNT
-TC

-IRQ (")

-CD SETUP (n)
-CHCK
-REFRESH
0sc
CHRESET
A(24-31)
-BE(0-3)
D(16-31)

-CD DS 32 (n)
-DS 32 RTN
TR 32

-MMC

-MMCR

-MMC CMD

Logic

D/R
D/-
D/R
D/-
-/IR
D/-
D/-
D/-
D/-

D/-
-IR
O/R
D/-
O/R
O/R
O/R
D/-
-/-
-/IR
D/-
-/IR
D/R
D/-
D/-
D/-
D/-
D/R
-/IR
D/-
-/-
D/-
-/IR
D/-

DMA
Chntir

D/R
D/-
D/R
D/-
-/IR
-/IR
D/-
D/-
D/-
D/-
D/-
-/-
/-
-/IR
-/IR
D/R

-/R
D/-
O/-
-I#
#l-
-/0
-0
-0
D/-

D/R
-/IR
A
o=

-/-
A

Bus
Master

D/R
D/-
D/R
D/-
-/IR
-/IR
D/-
D/-
D/-
D/-
D/-
/-
/-
-/IR
D/R
D/-
D/R
-/R
/-
O/-
-/R
D/O
-/0
-0
-/IR
D/-
D/-
D/R
-/R
-/0
-/0
/-
/-
/-

KEY

D = Drive Enabled

O = Optional

R = Receive Enabled
- = Not Implemented

= Some are Required

* IRQ (9-12, 14, 15, 3-7)
** See the system-specific technical references for more information.

Driver

Signal Group
TS (1)
TS (2)
TS (1)
TP (3)
BD (4)
TS (1)
TS (1)
TS (1)
TS (1)
TS (1)
TP (3)
TP (3)
BD (4)
OC (5)
OC (5)
OC (5)
BD (4)
TS (1)
OC (6)
TP (7)
OC (6)
TS (1)
CD (7)
BD (4)
TS (1)
TS (1)
TS (2)
TP (3)
BD (4)
TS (1)

wn

*r

DMA MEM I/0
Slave Slave Slave Type
D/R D/R D/R
-/R -/R -/R
D/R D/R D/R
-/0 -0 -/IO
#- #- H#-
-/- -/- -/-
-1# -1E -1
- -IR -/-
/R -/R -R
-/R -/R -R
-/R -/R -/R
D/- D/- DI
o/- 0O/~ Of-
/- /- /-
D/R -/- -/~
#I- -/- /-
DIi# -I- -/~
-/IR -/ ~/-
-0 -I- -/-
o/- -I- O/-
/R -/R -/R
D/- D/- D/-
-/0 -/R -/O
-0 -/10 -/0
-/IR -/R -/R
-IR -/R -/R
-IR -/R -/R
D/R D/R D/R
#- #H- H#-
/- -/~ -/-
-I- o/- O/-
-/~ -/0 -/0
-/- o/- Ol
-I- -/0 -/0

OC = Open Collector
TS = Tri-State

TP = Totem-Pole
BD = Bus Driver
CD = Clock Driver

Figure 8. Driver/Receiver Requirements and Options

20 Micro Channel Architecture, Micro Channel Connectors

The following figure describes the signal driver types.

Signal Group Driver Type
1,2 Tri-state (TS) with 24 mA sinking capacity.
3 Totem-pole (TP) with current sinking capacity of 6 mA.
4 Bus driver (BD) with current sinking capacity of 24 mA.
5,6 Open collector (OC) with 24 mA sinking capacity.
7 Unique drivers:

Totem-pole (TP) or Tri-state (TS) with current sinking
capacity of 6 mA.
Clock driver (CD) with 24 mA sinking capacity.

Figure 9. Signal Driver Types

The following notes apply to the driver and receiver options listed on

page 20.

Notes:

1. During the Reset state, an active CHRESET must degate all bus
drivers.

2. During the Reset state, the state of all signals is unknown.

3. -cp SeTUP is driven to only one channel connector at a time.

4. All pull-up resistors are provided by the system logic and pulled

up to +5 Vdec.

5. Loading Current: A maximum of 1.6 milliamperes per channel

connector, except signal group 5. The maximum loading current

of group 5 is 1.0 milliamperes per channel connector.

6. Loading Capacitance (average capacitance across a 0.1- to
2.3-volt interval):

¢ 15 pF maximum permitted for adapter for osc and Group 5

signals (see Figure 9 for Group 5 definition) and 20 pF

maximum permitted for adapter for all other signals. (The
value refers to the capacitance from the adapter side of the

connector to the adapter driver/receiver.)

¢ Total capacitance seen by the driver is 200 pF maximum for
Group 5 signals and 0sc, and 240 pF maximum for all other

signals.

Micro Channel Architecture, Micro Channel Connectors

21

7. An open collector can be either an open-collector device or a
tri-state device wired with the input grounded and using the
‘enable’ line to control the output.

8. The electromagnetic interference (EMI) potential of a bus driver
increases as the transition time of its voltage decreases.
Therefore, the drivers with output transitions greater than 1 Vdc
per nanosecond should be used only to meet channel timing
requirements. The figure on page 20 lists the role of the driver or
receiver while a given operation is being performed. The names
of the physical packaging of the logic should not be confused with
the performed functions.

Channel Signal Groups (Auxiliary Video Extension)

An adapter using the auxiliary video extension must not exceed the
following loading limits for any auxiliary video-extension signal pin it
is receiving:

e Cmax = 15.0 pF
L |||_ min = —1.6 mA
e |,y max = 50.0 uA.
An adapter using the auxiliary video extension must meet the

following minimum requirements for any auxiliary video-extension
signal pin it is driving:

¢ Cmin = 150.0 pF

¢ oo min = 10.0 mA - VSYNC and HSYNC
= 2.0 mA - All other signals

® |oy max = —4.0 mA - VSYNC and HSYNC
= —0.25 mA - All other signals.

22 Micro Channel Architecture, Micro Channel Connectors

Bus Ownership

Bus ownership is controlled by the central arbitration control point
based on prioritized arbitration of up to 16 devices. These arbitrating
devices can be DMA slaves, bus masters, or the system
microprocessor. If either a bus master or the system microprocessor
wins the arbitration, it owns the bus and becomes the controlling
master. If a DMA slave wins the arbitration, the supporting DMA
controller owns the bus and becomes the controlling master.

An adapter can incorporate either a master function, a slave function,
or a combination of both. For example, an adapter might be designed
to operate primarily as a DMA slave. However, it would probably
also respond to certain 1/0 read and I/O write operations from the
system microprocessor, making it an I/0 slave. If the adapter
contained RAM or ROM that was in the system microprocessor
address space, it would be a memory slave when that memory was
accessed.

Typically, a slave is selected by a decode of:

* An address

¢ Status (-so exclusive or -s1)

® MADE 24 (if it is a memory slave)
* M/-I0.

The decode is latched at the leading or trailing edge of -ADL or the
leading edge of -cMD. A DMA slave can also be selected by a latched
decode of the same signals, using the arbitration level in place of the
address.

Central Arbitration Control Point

The central arbitration control point (central arbiter) gives devices on
the channel the ability to share and control the system. It allows
burst data transfers and prioritization of control between devices.
This central arbiter supports up to 16 devices, such as a DMA slave, a
bus master, and the system microprocessor

Note: Information about programming the central arbitration control
point can be found in the system-specific technical references.

Micro Channel Architecture, Arbitration 23

The central arbiter uses seven signals to coordinate arbitration for all
devices from a single arbitration point on the system board. These
signals are -PREEMPT, ARB/-GNT, -BURST, and ARBO through ARB3.

Arbitrating devices (local arbiters) requesting use of the system
channel, drive -PREEMPT active. The central arbiter initiates an
arbitration cycle when the present device releases the channel. The
central arbiter indicates an arbitration cycle by driving ARB/-GNT to the
arbitrate state. The requesting local arbiters then drive their
assigned 4-bit arbitration level onto the arbitration bus. When an
arbitrating device sees a more significant bit low (inactive) on the
arbitration bus than those driven low by itself, it stops driving its
lower-order bits onto the arbitration bus. The arbitrating device
driving the lowest arbitration level thereby wins control of the
channel when ARB/-GNT goes to the grant state.

Arbitrating devices with multiple transfers to perform must signal the
central arbiter by driving -BURST active until all transfers have been
completed or until another device drives -PREEMPT active, in which
case further transfers are postponed until the device wins the system
channel again. Because -PREEMPT and ARBO through ARB3 may be
driven by multiple devices, they must be driven through an open
collector driver. ARB/-GNT is driven by the central arbiter only.

The central arbiter recognizes an end-of-transfer when both status
signals (-so and -s1), -BURST, and -CMD are inactive. Control of the
channel is then transferred to the next higher priority device or to the
system microprocessor by default.

24 Micro Channel Architecture, Arbitration

The interaction between the central arbitration control point and the
local arbiters is called distributed arbitration. The following is a
block diagram of distributed arbitration.

A —y
R —
? - Level X
T B Local Arbiter
U -
Rs
A
T
1
ARB/-GNT o)
» LN
Central
Arbitration -PREEMPT — -
Point
- Level Y
-BURST Local Arbiter
- |
Arbitration BUS ARB 0-3
J— A
\TDMA Controller I g
Level Z
Data Addr 0 Local Arbiter
2
3
Transfer
Controls

Figure 10. Distributed Arbitration Block Diagram

Local Arbiters

Devices requesting the use of the channel must implement logic to
drive the arbitration bus in a way that allows all competing devices to
recognize the winner. This logic is known as a local arbiter. An
arbitrating device should compete for control of the channel only if it
has driven -PREEMPT active, and ARB/-GNT has subsequently gone to the
arbitrate state. A competing local arbiter drives its arbitration level
onto the arbitration bus, then compares, on a bit-by-bit basis, its
arbitration level with the value appearing on the arbitration bus
beginning with the most significant bit, ARB3. If the competing local
arbiter detects a mismatch on one of the bits, it should immediately
cease driving all lower-order bits. If the local arbiter subsequently

Micro Channel Architecture, Arbitration 25

recognizes a match on that bit, it may continue driving lower-order
bits until another mismatch is detected. Because the arbitration bus
is driven by open-collector drivers, multiple arbiters can safely drive
the bus. The following is an example of bus arbitration.

1.

Two devices with arbitration levels 1010 and 0101 (hex A and 5)
compete for the channel. Both devices drive their arbitration
levels on the bus, which now appears as 0000.

. The first device (1010) detects a mismatch on ARB3 and stops

driving all lower-order arbitration bus bits (ARB2 and ARBo in this
case).

. The second device (0101) detects a mismatch on ARB2 and stops

driving the lower-order arbitration bit (ARB1, in this case). The
arbitration bus now shows 0111.

. The second device now sees a match on ARB2 and resumes

driving ARB1 of the arbitration bus.

. The arbitration bus now shows a value of 0101, and the second

device wins control of the channel.

26 Micro Channel Architecture, Arbitration

The following is a simplified example of a local arbiter.

+COMPETE LATCH
AND *
TS | g, +ARB3
A N l
s %
s OR
1
g AND *
n o——e—— +ARB2
e
+2f—— 1 P
d N
%
OR
A
; AND *
i + ARB1
¢ t1—1 1P]
N
; \") I—l
t OR
i
g AND
N : ARBO
N +
v L |
L OR
e
v
e
] AND
+BUS WON
+ARB/-GNT — "q P
%

* Open-Collector Driven

Figure 11. Local Arbiter Example

Micro Channel Architecture, Arbitration 27

Burst Mode

One of the most efficient ways for a device, such as a fixed disk drive,
to transfer data is in bursts. These bursts are often separated by long
inactive periods. The burst mode makes these devices more
efficient.

To use the burst mode, the local arbiter activates -BURST and does not
release it until after the leading edge of the last -cMD pulse in the
burst sequence. The following diagram shows a burst operation
without interference.

ARB/-GNT

Arbitration Bus
ARB 0,1,2,3

-CMD

-BURST

Figure 12. Burst Mode Timing

28 Micro Channel Architecture, Arbitration

Preemption

Whenever an arbitrating device needs service, it activates -PREEMPT.
The following timing diagram shows -PREEMPT occurring during a burst
operation.

ARB/-GNT 4 6

Arbitration Bus Level A Level B
ARB 0,1,2,3 Local Arbiter 5 Local Arbiter
-CMD ‘ I ‘ l ‘ .

-BURST 1 3

-PREEMPT 2 7

Figure 13. Preempt Timing

The sequence is as follows:

1. Device A gains control of the channel.

2. Device B, nearing an overrun condition, requests preemption.

3. Device A, still in control of the channel, completes any partial
transfers and removes -BURST. Device A does not participate in
the next arbitration cycle if the fairness feature is active. See
“Programmable Fairness and the Inactive State” on page 30.

4. When the central arbitration control point recognizes the end of
transfer, it removes the grant.

5. Arbitration for channel control begins.

6. When ARB/-GNT is in the grant state, the new local arbiter gains
control of the channel.

7. Device B, the preempting device, removes -PREEMPT in response
to the grant.

If an arbitrating device holds -BURST active for more than 7.8
microseconds after an active -PREEMPT, an error condition may exist,
and a channel time-out may occur. ARB/-GNT is driven high

Micro Channel Architecture, Arbitration 29

immediately and takes control of the channel from the controlling
master. An NMI is driven active. The channel remains in the
arbitration state under the control of the system microprocessor until
released by a NMI handler.

Programmable Fairness and the Inactive State

A programmable fairness feature in bursting DMA slaves and
bursting masters allows each device a share of the channel time. If
the fairness feature is active and an arbitrating device that owns the
channel is preempted, the device enters the Inactive state and must
wait for an inactive -PREEMPT and an inactive (trailing) edge of status
to compete for the channel again. The fairness feature allows the
system to service all arbitrating devices in order of priority before the
same device can gain control of the channel again.

Arbitration Bus Priority Assignments

The following figure identifies the arbitration level assignments that
have been maintained to ensure hardware and software compatibility
with existing products. The functions with the lowest arbitration level
have the highest priority.

30 Micro Channel Architecture, Arbitration

ARB Level Compatibility Assignment

-2 Memory Refresh

-1 NMI

DMA Channel 0 (Programmable to any arbitration level)
DMA Channel 1

DMA Channel 2

DMA Channel 3

DMA Channel 4 (Programmable to any arbitration level)
DMA Channel §

DMA Channel 6

DMA Channel 7

Available

Available

Available

Available

Available

Available

Available

System Microprocessor

TMOOW»OONONDWON =O

Figure 14. Arbitration Bus Priority Assignments for Compatibility

DMA channels can be masked in order to install a bus master at the
assignment specified for that DMA channel. Information about
programming the central arbitration control point can be found in the
system-specific technical references.

NMI service is executed at a priority level higher than 0, called -1.
Memory refresh is prioritized at -2, two levels higher than 0. Levels
-1 and -2 are reached on the system board only while ARB/-GNT is in
the arbitrate state.

When the central arbitration control point receives a level -1 request
(NMI, a system-board internal signal), it may activate -PREEMPT, wait
for the end of transfer, and then place ARB/-GNT in the arbitrate state,
denying channel activity to arbitrating devices. The grant is then
given to the level -1 request, and ARB/-GNT is held in the arbitrate state
until the operation is complete and the NMI is reset.

Micro Channel Architecture, Arbitration 31

Channel Support

The 32-bit bus requires unique logic to permit masters with 16-bit
data to communicate with slaves with 32-bit data.

Address Bus Translator

A 32-bit slave uses the ‘-byte enable’ channel signals (-BEo through
-BE3) as part of its address instead of A0 and -SBHE. A 16-bit master
does not provide these four ‘-byte enable’ signals; the system
generates them when a 16-bit master has control of the bus.

Data Bus Steering

Eight-bit masters are not supported; however, an 8-bit
microprocessor can be used as a 16-bit master if it does its own data
steering of the two low-order data bytes.

A 32-bit slave writes data to and reads data from data bits 0 through
31. A 16-bit master does not use data bits 16 through 31; the system
board logic must cross data over from the low 16 data lines (Do
through D15) to the high data lines (D16 through D31) and back at the
appropriate times. Compensation for the added delay is the
responsibility of the 32-bit slave.

A0 -SBHE Description

Byte 0 Only (DO — D7)

Byte 1 Only (D8 — D15)

Byte 0 and Byte 1 (D0 — D15)
Invalid

- O - O
e =

Figure 15. Steering Control

TR 32: This signal is driven inactive by 32-bit masters only. When
TR 32 is active, it is used by:

¢ The Central Translator Logic to drive -BE0 through -BE3

* The Central Steering Logic to perform bus steering.

32 Micro Channel Architecture, Channel Support

When TR 32 is active, 32-bit slaves can use it to recognize that the
controlling master is not 32-bit and compensate for additional delay
attributable to the Central Steering Logic.

Central Steering Logic: Central Steering Logic uses A0, A1, -SBHE,
-CD DS 16, and -CD Ds 32 to steer data in support of 16-bit masters
communicating with 32-bit slaves.

Central Translator Logic: Central Translator Logic translates Ao, A1,
and -sBHE to -BEO through -BE3, when TR 32 is active.

-BE(0-3): Signals -BEO through -BE3 are:
* Driven by a 32-bit master that has control of the bus

¢ Created by the Central Translator Logic when a 16-bit master has
control of the bus

¢ Used by 32-bit slaves only.

The following block diagram shows the implementation of data bus
steering.

Channel
AO,A1 AO,A1
Steering TR 32,-SBHE TR 32,-SBHE Translator
Control* >
|l«— -CD DS 16/32 —
-BE(0-3)
‘ -
* Bus [@—— DO0-D15 —»
Cross-
over

D16-D31 —ﬂ

* For 16-bit devices to 32-bit devices

Figure 16. Data Bus Steering Implementation

Micro Channel Architecture, Channel Support 33

Level-Sensitive Interrupt Sharing

The main objectives of level-sensitive interrupt sharing are to:

¢ Simplify the logic-sharing design of adapters

* Reduce transient sensitivity of the interrupt controller

Provide compatibility with existing software

Allow for a mixture of sharing and nonsharing hardware on the
same interrupt level.

Each adapter designed for the Micro Channel architecture uses a
level-sensitive, active-low, interface mechanism. This mechanism,
an open-collector driver (or tri-state driver gated active-low), drives
the interrupt request line for levels assigned for the adapter function.

Note: Designers may want to limit the number of devices that share
an interrupt level because of performance and latency reasons.

An adapter must hold the level-sensitive interrupt active until it is
reset as a result of servicing the interrupt (reset). Service routines
must not issue an End of Interrupt instruction (EOI) to the interrupt
controller until the interrupt line of the device being serviced is reset.
All adapters must also provide an interrupt-pending latch that is
readable at an'I/O address bit position and can be reset by normal
servicing of the device.

Interrupting

Device
¢—— Other Device
Address
Data
Control Interrupt
Pending i
Register ¢— Other Device
| Open
Collector P
Interrupt Driver «—— Other Device
Request
L— -IRQx

Figure 17. Typical Adapter Interrupt Sharing Implementation

34 Micro Channel Architecture, Interrupt Sharing

Level-sensitive interrupts are interlocked between the hardware and
software that support the interrupt service. Lost or spurious
interrupts are more easily isolated. The following figure shows the
sequence of interrupt sharing and the interaction of hardware and
software when an interrupt is serviced by the system microprocessor.

A bus master can also service interrupts in a similar manner.
Interrupt requests to the interrupt controller can be masked off and
the request can be serviced by a bus master.

Hardware Operation Software Operation

1. An interrupt condition sets hardware

interrupt line X to an active (low) level

with an open-collector driver, and sets

an interrupt-pending latch readable by

code.

2. An interrupt controller presents the

interrupt to the supporting

microprocessor.
3. The supporting microprocessor
begins executing code at the beginning
of the appropriate chain of interrupt
handlers.
4. The interrupt-handler code reads
the interrupt-pending latch of the first
device in the chain. If the latch is not
pending, the next device in the chain is
tested. When a reporting card is
detected, the handler executes the
appropriate service routine.
5. The interrupt service routine
operates the device hardware.

6. The adapter hardware resets the

interrupt-pending latch and the

hardware interrupt line because of the

interrupt service routine actions.
7. The interrupt service routine
finishes executing code resetting the
interrupt controller as its final action
(End of Interrupt).

8. The interrupt controller resets.

9. If an interrupt is pending (IRQ active

by another device), the interrupt

controller sets immediately and the

sequence starts again.

Figure 18. Interrupt Sharing Sequence

Micro Channel Architecture, Interrupt Sharing 35

Micro Channel Critical Timing Parameters

This section provides timing diagrams for Micro Channel operations.
All timings are related to a nominal cycle. The cycle may be changed
by systems and adapters in various ways. Developers should ensure
that hardware and software designs operate over the ranges
specified and do not depend on a given performance level.

Basic-Transfer Cycle

This section provides the specification for critical timing parameters
for the basic-transfer cycle.

Simplified Basic-Transfer Cycle

Most masters, including DMA controllers, transfer data with the same
control sequence. Except for matched-memory transfers, the signals
appear on the channel in the following sequence:

1. Address bus, MADE 24, M/-10, and -REFRESH (if applicable) become
valid, beginning the cycle.

2. The ‘status’ signals, so and s1, become valid.

3. The ‘address decode latch’ signal (-ApL) becomes valid. A slave
may latch decodes of address, status (so exclusive or s1), and
M/-10.

4. In response to an unlatched address decode, MADE 24, and M/-10O,
the adapter returns:

® .CDSFDBK

¢ .cDDs 16 (if the device is capable of 16-bit operations)

* .cDDs 16 and -CD Ds 32 (if the device is capable of 32-bit
operations).

5. In response to an unlatched address decode, MADE 24, M/-l0, and
status, the adapter drives cD CHRDY inactive if the cycle is to be
extended.

6. Write data appears on the bus (for the write cycle).

36 Micro Channel Architecture, Channel Timing

7. -cMD becomes active and -ADL becomes inactive. A slave must
latch decodes of address, status (So exclusive or s1), and M/-10 if
they were not latched at the fall of -ADL.

8. The ‘status’ signals become inactive.

9. The ‘address’ signals become invalid in preparation for the next
cycle.

10. In response to an address change:

® .CD SFDBK is set inactive by the device.
® .CDDS 16 is set inactive by the device.
* .cDDs 32 is set inactive by the device.

11. If cD CHRDY has been set inactive, the system holds in this state
until cD CHRDY is set active. This line should not be held inactive
longer than specified.

12. The device places data on the bus in preparation for the trailing
edge of -cMmD (for the read cycle).

13. The address, ‘status’ signals, and m/-i0 for the next cycle may
become valid.

14. -cMD goes inactive, ending the cycle.

Note: The address and status can be overlapped with the preceding
cycle to minimize the memory access time impact on
performance.

Micro Channel Architecture, Channel Timing 37

The sequence for the basic-transfer cycle is as follows.

ADDRESS

M/-10 11 arrrerercr—
-REFRESH " Next Cycle
MADE 24 _|l JLLJLLLL

TR 32

STATUS H..

-ADL

CD CHRDY > Wait |State -

-CD DS 16/32 - >

-CD SFDBK L

Write Data .

from System Valid [

-CMD

Read Data

to System Valid [

Figure 19. Overview of the Basic-Transfer Cycle

38 Micro Channel Architecture, Channel Timing

I/0 and Memory Cycle

The timing diagrams for the basic I/0 and memory cycle appear on
the following pages in this sequence:

¢ Default cycle (200 nanoseconds minimum)

¢ Synchronous-extended cycle (300 nanoseconds minimum) -
Special case

¢ Asynchronous-extended cycle (=300 nanoseconds minimum) -
General case.

The timing diagrams for the matched-memory cycle appear in the
system-specific technical reference for those models that support
matched-memory cycles.

Whether a default, a synchronous-extended, or an
asynchronous-extended cycle is performed depends on how a slave
uses CD CHRDY.

A default cycle occurs when a slave does not hold cD CHRDY inactive
longer than the time specified after address valid and status active.

A synchronous-extended cycle occurs when a slave releases

CD CHRDY synchronously within the specified time after the leading
edge of -cMD. The slave provides the read data within a specified
time from -CMD.

An asynchronous-extended cycle occurs when a slave releases

cD CHRDY asynchronously. However, the slave provides the read data
within the specified time from cb CHRDY release.

Micro Channel Architecture, Channel Timing 39

Default Cycle

-S0, -81 ~ N\

T1|<—T2——-|<—T1o->|<—T24
T3—>|<—T4—>| jt—n| T8

il

L N LS .

TS5 w»ia-T6 »iae—T7

T238 I———’\

ADDRESS
M/-I0 %(m(
MADE 24

| [T115] '<—T9——|

-SBHE \ /

T12 -
T32 |<-

-BE (0-3) ~ 5

f— 131 le—T33
-CD DS 16/32 w
’-— T13-5| {
-CD SFDBK _1_/
‘.- T14-»|
«— T23 (CMD TO CMD) -
T25 -
— T23A —»

-CMD \\

- T16 —————

T —

T16 —

T17 -—>| |-—

T18 —u) l-—

WRITE DATA,
DP(0-1) —<

) e

| le— 20—

1219 |

READ DATA,
P01 T D

T19 |

40 Micro Channel Architecture, Channel Timing

fe—iT22

T

T2
T3

T4
T5
T6
T7
T8

T9

T10
T
T12
T13

T4

T15
T16
T17
T18
T19
T20
T21
T22
T23
T23A
T23B
T24
T25
T31

T32
T33

Timing Parameter

Status active (low) from ADDRESS,M/-10,-REFRESH
valid

-CMD active (low) from Status active (low)

-ADL active (low) from ADDRESS,M/10,-REFRESH
valid

-ADL active (low) to -CMD active (low)

-ADL active (low) from Status active (low)

-ADL pulse width

Status hold from -ADL inactive (high)
ADDRESS,M/-10,-REFRESH,-SBHE hold from -ADL
inactive

ADDRESS,M/-10,-REFRESH,-SBHE hold from -CMD
active (low)

Status hold from -CMD active

-SBHE setup to -ADL inactive

-SBHE setup to -CMD active

-CD DS 16/32 active (n) (low) from
ADDRESS,M/-10,-REFRESH valid

-CD SFDBK active (low) from
ADDRESS,M/-10,-REFRESH valid

-CMD active (low) from ADDRESS valid

-CMD pulse width

Write data setup to -CMD active (low)

Write data hold from -CMD inactive (high)

Status to Read data valid (Access Time)

Read data valid from -CMD active (low)

Read data hold from -CMD inactive (high)

Read data bus tri-state from -CMD inactive (high)
-CMD active to next -CMD active

-CMD inactive to next -CMD active

-CMD inactive to next -ADL active

Next Status active (low) from Status inactive

Next Status active (low) to -CMD inactive

-BE(0-3) active from ADDRESS valid (32-bit masters
only)

-BE(0-3) active from -SBHE, A0, A1 active

-BE(0-3) active to -CMD active

Min/Max

10/ - ns
55/ - ns
45/ -ns

40/ - ns
12/ - ns
40/ - ns
25/ - ns
25/ - ns
30/ - ns
30/ - ns
40/ - ns
40/ - ns
-/ 55ns
-/ 60ns
85/ - ns
90/ - ns
0/ - ns

30/ - ns
- /125 ns
-/ 60ns
0/ - ns

-/ 40ns
190/ - ns
80/ - ns
40/ - ns
30/ - ns
-/ 20ns
-/ 40 ns
-/ 30ns
10/ -ns

Note

Figure 20. Default /0 and Memory Cycle (200 Nanoseconds Minimum)

Notes:

1. When slaves are selected by the controlling master, they drive
-CD SFDBK. Slaves do not drive -cD SFDBK when they are selected
by the ‘-card setup’ signal.

2. Slaves should use transparent latches to latch information with
the leading or trailing edge of -ApL or with the leading edge of
-CMD.

Micro Channel Architecture, Channel Timing 41

3. -cD Ds 16/32 and -CD SFDBK must be driven by unl/atched address
decodes because the next address may enter the current cycle
early.

4. Any controlling master, including the DMA controller, can operate
at a performance level lower than the one specified. Designers
should not design to a given performance level because the level
can be reduced by cb CHRDY, a lower microprocessor rate, a
lower DMA controller rate, or by system contention.

Default Cycle Return Signals
-CD DS 16/32 (n)

T13RL ~—l r T13RT
-DS 16/32 RTN \——/—

CD CHRDY (n)
T26RL ——l T26RT

CHRDYRTN \—/__

Timing Parameter Min/Max Note
T13RL -CD DS 16/32 (n) active to -DS 16/32 RTN active -/20 ns 1
T13RT -CD DS 16/32 (n) inactive to -DS 16/32 RTN -/20 ns 1

inactive
T26RL CD CHRDY (n) inactive to CHRDYRTN inactive -/20 ns 2
T26RT CD CHRDY (n) active to CHRDYRTN active -/20 ns 2

Figure 21. Default Cycle Return Signals (200 Nanoseconds Minimum)

Notes:

1. These signals, -Ds 16 RTN and -DS 32 RTN, are developed from a
negative OR of signals received from each channel slave.

2. This signal, CHRDYRTN is developed from a positive AND of
CD CHRDY signals received from each channel slave.

42 Micro Channel Architecture, Channel Timing

Synchronous Speclal Case of Extended Cycle

A synchronous-extended cycle occurs when a slave releases

cD CHRDY synchronously within the specified time after the leading
edge of -cMD. The slave provides the read data within a specified
time from -cMD. The timing sequence is illustrated by the following
figure.

S0, 81 W -/ \

-CMD / /

CD CHRDY (n)

READ DATA C»—
fe——T280—

Purely Synchronous Special Case

Figure 22. Timing Sequence for the Synchronous Special Case of Extended
Cycle

Micro Channel Architecture, Channel Timing 43

Synchronous-Extended Cycle (300 Nanoseconds Minimum - Special
Case)

™\ <\
-0, -81 ‘ / AN
-ADL ‘ AN s ,/ l

ADDRESS
-REFRESH,

MADE 24

TR 32 |

-SBHE N / |
-CD DS 16/32 —L/ |

[713
-CD SFDBK _—_L/ |
-~ T14 i= T16A >
CMD AN {——
|
WRITE DATA 4 »
| |
READ DATA »

d
<
1 f— T28D—" |
] T28
CD CHRDY F—\————/::] ’
T27

44 Micro Channel Architecture, Channel Timing

T13 -CD DS 16/32 (n) active (low) from -/ 55 ns 2
ADDI’\I:QS.M/'IO,'r\l.I RESH valid
T14 -CD SFDBK (n) active (low) -/ 60 ns 2
ADDRESS,M/-10,-REFRESH valid
T16A -CMD pulse width 190/ - ns
T26 CD CHRDY (n) inactive (low) from ADDRESS valid -/ 60 ns 3,
See
T27
T27 CD CHRDY (n) inactive (low) from Status active 0/ 30 ns 3
T28 CD CHRDY (n) release (high) from -CMD active 0/ 30 ns 1
(low)
T28D Read Data valid from -CMD active 0 /160 ns 1

This figure shows only the parameters additional to the default cycle. All other
parameters are the same as the default cycle.

Timing Parameter Min/Max Note

(when used with T28)

Figure 23. Synchronous-Extended Cycle (300 Nanoseconds Minimum -

Special Case)

1.

CD CHRDY is released by a slave performing a 300-nanosecond
extended cycle that is synchronous with the leading edge of -cMD.
Since CD CHRDY is generally an asynchronous signal, this is called
a purely synchronous special case.

This is the same as default cycle timing (listed here for
emphasis).

T27 is valid only when status becomes active 30 nanoseconds or
more after the address is valid.

If status overlaps with a previous -cMD, then the cD CHRDY state is
not valid during the overlapped period.

Slaves must not hold cb CHRDY inactive (low) more than 3.5
microseconds.

Micro Channel Architecture, Channel Timing 45

Notes:

46 Micro Channel Architecture, Channel Timing

Asynchronous-Extended Cycle (General Case)

An asynchronous-extended cycle occurs when a slave releases

CD CHRDY asynchronously. However, the slave provides the read data
within the specified time from cb CHRDY release. The timing sequence
is illustrated by the following figure.

S0, 81 N / N\

-CMD AN -/ /

CD CHRDY —;\ /

f—T295s —»
READ DATA J:»_

Figure 24. Timing Sequence for the Asynchronous-Extended Cycle
(General Case)

Micro Channel Architecture, Channel Timing 47

Asynchronous-Extended Cycle (>300 Nanoseconds Minimum -
General Case)

T\ / SO\

-S0, -S1 N
ﬂ 7

-ADL v I

ADDRESS l

M/-10

merresh,)< W7
MADE 24 |

TR 32

- N / N

-CD DS 16/32 <———>JT13 I

-CD SFDBK _}m-/ I
-CMD \ /
WRITE DATA < >>>———

READ DATA)

1208 —»] |e—
CD CHRDY ——\—/

T26
%_IG T27

48 Micro Channel Architecture, Channel Timing

Timing Parameter Min/Max Note

T13 -CD DS 16/32 (n) active (low) from -/ 55 ns 2
ADDRESS,M/-10,-REFRESH valid

T14 -CD SFDBK (n) active (low) -/ 60 ns 2
ADDRESS,M/-10,-REFRESH valid

T26 CD CHRDY (n) inactive (low) from ADDRESS valid -/ 60 ns See

T27

T27 CD CHRDY (n) inactive (low) from Status active 0/ 30 ns

T29S Read data from slave valid -/ 60 ns 1
from CD CHRDY (n) active (high)

This figure shows only the parameters additional to the default cycle. All other

parameters are the same as the default cycle.

Figure 25. Asynchronous-Extended Cycle (=300 Nanoseconds Minimum -

General Case)

Notes:

1.

CD CHRDY is released asynchronously by a slave performing a
300-nanosecond minimum cycle. The slave must present the
Read data within the time specified after the release of cD CHRDY.

This is the same as default cycle timing (listed here for

emphasis).

T27 is valid only when status becomes active 30 nanoseconds or
more after the address is valid.

If status overlaps with the previous -CMD, then the CD CHRDY state
is not valid during the overlapped period.

Slaves must not hold cD CHRDY inactive (low) more than 3.5

microseconds.

Micro Channel Architecture, Channel Timing 49

DMA Timing

This section provides the specification for critical timing parameters
for DMA timing.

First Cycle After Grant
l READ WRITE
ARB/-GNT x /—
-—' [T43A
ADDRESS
MADE 24
TR 32

-SBHE ‘ AN / N
-80, -S1 L AN / ~—
-CMD Y N2

50 Micro Channel Architecture, Channel Timing

Timing Parameter Min/Max

T43A ADDRESS valid from ARB/-GNT low 0/ - ns
T43B -CMD active from ARB/-GNT low 115/ - ns

Figure 26. First Cycle After Grant

Note: A DMA controller must allow 30 nanoseconds after the grant,
for a slave to generate an internal acknowledgment that it has
been selected. During the first cycle, the DMA controller must
allow this additional 30 nanoseconds before sampling
-CD DS 16/32 RTN and CHRDYRTN, if it places an address on the bus
within 30 nanoseconds after the grant. However, if the DMA
controller places the address on the bus 30 nanoseconds after
the grant, the additional 30 nanosecond allowance is not
needed.

Micro Channel Architecture, Channel Timing 51

Single DMA Transfer (DMA Controller Controlied)

—
ARBI-GNT N\ S/

ADDRESS
MADE 24
TR 32
-SBHE AN 4 AN 7
DMA READ
J MEMORY READ | 1/0 WRITE

-80, -S1 \ / \ /
-CMD w

-BURST (High)
(DMA Slave) 52 fa—mm
T52D [w—te—{ T53
-TC v‘
DMA WRITE

| 1/0 READ I MEMORY WRITE

-50, -S1 AN 7 < 7
-CMD — /ST S

-BURST (High)
(DMA Slave)

T52 (e
T52D te—o-1e T53

e AN

v

52 - Micro Channel Architecture, Channel Timing

Timing Parameter Min/Max Note

T62 -TC setup to -CMD inactive 30/ - ns
T52D -TC setup to -CMD inactive 15/ - ns 2
T63 -TC hold to -CMD inactive 10/ - ns

Figure 27. Single DMA Transfer (DMA Controller Controlled)

Notes:

1. Only those timing parameters additional to those specified for the
basic-transfer cycle are included here.

2. Only for devices using a 200-nanosecond minimum default cycle.

Micro Channel Architecture, Channel Timing 53

Burst DMA Transfer (DMA Controller Terminated)
DMA READ

I MEMORY READ I 1/0 WRITE

-80, -81 N\ / N\ /
-CMD w

152 |a—wte—s] T53
T52D fe—

T54 — I-

-BURST < d
(DMA Slave)

DMA WRITE

| 1/0 READ | MEMORY WRITE

wst N S NS
-CMD \ / \ /

-TC U
754——| |-—
-BURST Y

(DMA Slave) P

54 Micro Channel Architecture, Channel Timing

Timing Parameter Min/Max Note
T52 -TC setup to -CMD inactive 30/- ns
T52D -TC setup to -CMD inactive 15/- ns 2
T53 -TC hold from -CMD inactive 10/- ns
T54 -BURST released by the DMA slave from -TC -/30 ns

active

Figure 28. Burst DMA Transfer (DMA Controller Terminated)

1. Only those timing parameters additional to those specified for the
basic-transfer cycle are included here.

2. Only for devices using a 200-nanosecond minimum default cycle.

Micro Channel Architecture, Channel Timing 55

Burst DMA Transfer (DMA Slave Terminated - Default Cycle 200
Nanoseconds)

DMA READ
I MEMORY READ I 1/0 WRITE
ARB/-GNT \ /_
ADDRESS
MADE 24
TR 32

-SBHE < 7 f < 7
-80, -S1 w
-CMD W

T55
T55A) le—s] 56
-BURST y
(DMA Slave) P v
DMA WRITE
[1/0 READ] MEMORY WRITE
ARB/-GNT _\ /‘
ADDRESS
mocz X < %
MADE 24
TR 32

l
-SBHE | AN 7 < 7

_SO, -S1 _—\N
|

-CMD m
T55 —> "— T56
-BURST TS5, 5

d
(DMA Slave) d S

d

56 Micro Channel Architecture, Channel Timing

Timing Parameter

T55 -BURST released by the DMA slave from the last
1/0 Status active (default cycle only)

TS55A -BURST released by the DMA slave from the last
1/0 ADDRESS valid (default cycle only)

T56 -BURST inactive (high) setup to -CMD inactive

Min/Max

-/40 ns

-/70 ns

35/-ns

2

2

3

Figure 29. Burst DMA Transfer (DMA Slave Terminated - Defauit Cycle 200

Nanoseconds)

Notes:

1. Only those timing parameters additional to those specified for the

basic-transfer cycle are included here.

2. |f, after releasing -BURST and upon receiving -SBHE, the DMA slave
has another cycle to perform, it must redrive -BURST.

3. -BURST inactive (high) setup time to the end of -cMb (T56) must be
guaranteed during the last I/O write cycle to prevent the DMA
controller from starting the next cycle. This setup time (T56) is

guaranteed by the sum of -BURST release by the DMA slave

(T55/T55A) and the -BURST resistor-capacitor restoration time.

The resistor-capacitor restoration time must not exceed 70
nanoseconds. T56 is the same for the default and extended

cycles.

Micro Channel Architecture, Channel Timing 57

Burst DMA Transfer (DMA Slave Terminated - Synchronous-Extended
Cycle 300 Nanoseconds)
DMA READ

J MEMORY READ | 1/0 WRITE

-S0, -S1 \ / N\ /
-CMD \ / \ /

CD CHRDY N S __/_-_
T55E ——‘ t<- —»| |« T56
-BURST .

(DMA Siave) yayd

4

DMA WRITE
I 1/0 READ I MEMORY WRITE l 1/0 READ [MEMORY WRITE

s NN NS N

-CMD W

ﬂ I‘- T56
TS5E ol
ay

// //

-BURST 7
(DMA Slave)

CD CHRDY _\/ \\ P p _/ \\\\ P -7
e v N’

58 Micro Channel Architecture, Channel Timing

Timing Parameter Min/Max Note

TS5E -BURST released by the DMA slave from the last -/80 ns
-CMD active (extended cycles only)
T56 -BURST inactive (high) setup to -CMD inactive 35/- ns 2

Figure 30. Burst DMA Transfer (DMA Slave Terminated -
Synchronous-Extended Cycle 300 Nanoseconds)

Notes:

1. Only those timing parameters additional to those specified for the
basic-transfer cycle are included here.

2. -BURST inactive (high) setup time to the end of -cMD (T56) must be
guaranteed during the last I/O write cycle to prevent the DMA
controller from starting the next cycle. This setup time (T56) is
guaranteed by the sum of -BURST release by the DMA slave (T55E)
and the -BURST resistor-capacitor restoration time. The
resistor-capacitor restoration time must not exceed 70
nanoseconds. T56 is the same for the default and extended
cycles.

Micro Channel Architecture, Channel Timing 59

Burst DMA Transfer (DMA Slave Terminated -
Asynchronous-Extended Cycle >300 Nanoseconds)

DMA READ

I MEMORY READ l 1/0 WRITE

-80, -S1 \ / \ /
-omD NN
T55xl~—-—| |
N\,
CD CHRDY (n) . e ___/_—

-BURST VoA
(DMA Slave)

DMA WRITE
| 110 REAHMEMORY WRITE]) READ] MEMORY WRITE

-80, -81 —_/__/W
-CMD W

—>| T56
-BURST ST
(DMA Slave) 2/

Tssx | |-
CD CHRDY (n) w N S N
N _,/ 4

60 Micro Channel Architecture, Channel Timing

Timing Parameter Min/Max Note

T55X -BURST released by the DMA slave before CD 50/- ns
CHRDY (n) active (high) (Async-Extended cycles
only)
T56 -BURST inactive (high) setup to -CMD inactive 35/- ns 2

Figure 31. Burst DMA Transfer (DMA Slave Terminated -
Asynchronous-Extended Cycle >300 Nanoseconds)

Notes:

1. Only those timing parameters additional to those specified for the
basic-transfer cycle are included here.

2. -BURST (high) setup time to the end of -CMD (T56) must be
guaranteed during the last I/0 write cycle to prevent the DMA
controller from starting the next cycle. This setup time (T56) is
guaranteed by the sum of -BURST release by the DMA slave (T55X)
and the -BURST resistor-capacitor restoration time. The
resistor-capacitor restoration time must not exceed 70
nanoseconds. T56 is the same for the default and extended
cycles.

Micro Channel Architecture, Channel Timing 61

Arbitration Timing

This section provides the specification for critical timing parameters
for arbitration protocol.

Arbitration Cycle

ARB CYCLE

'4—1‘40 - T42 — |<—
-PREEMPT N\ /

| |
-BURST —/’ <——T44——” \—

ARB/-GNT /—_X___

- T49
je— Ta1 T45
- T46
T47 T48
-S0, -S1

|
_/‘ DZNI4
an N

Exiting from Inactive State
T42A

Ta2
<—>|<— RC RESTORE —#{e—1

-PREEMPT W‘_l

ARB/-GNT

-S0, 1

62 Micro Channel Architecture, Channel Timing

Timing Parameter Min/Max Note
T40 -PREEMPT active (low) to End of Transfer 0/78us 1
T41 ARB/-GNT high from End of Transfer 30/- ns 6
T42 -PREEMPT inactive (high) from ARB/-GNT low 0 /50 ns
T42A -PREEMPT inactive (high) to Status inactive 20/- ns 5
T43 -BURST active (low) from ARB/-GNT low (By - /50 ns 4

Bursting DMA slave)
T44 ARB/-GNT high 100/- ns 2
T45 Driver turn-on delay from ARB/-GNT high 0 /50 ns 3
T45A Driver turn-on delay from lower priority line 0 /50 ns 3
T46 Driver turn-off delay from ARB/-GNT high 0 /50 ns 3
T47 Driver turn-off delay from higher priority line 0 /50 ns 3
T48 Arbitration bus stable before ARB/-GNT low 10/- ns
T49 Tri-state drivers from ARB/-GNT high -/50 ns

Figure 32. Arbitration Cycle

1. The intent of this parameter is to limit the maximum
non-preemptive ownership of the bus.

2. The value shown applies only to the special case implementation
involving the central arbitration control point, and is provided for
pulse width and portability considerations only. Arbitration can
be extended by refresh or error recovery procedures. An arbiter
should decode a win of the grant by a combined decode of the
arbitration bus and the ARB/-GNT. The minimum arbitration time
can be 100 nanoseconds when a level 0 arbiter and the central
arbitration control point coordinate. In this special case, the
central arbitration control point can terminate arbitration
prematurely at 100 nanoseconds.

3. T45, T45A, T46, and T47 must be satisfied by ARB (0-3) drivers of all
arbitrating bus participants.

4. This parameter applies to all bus winners.

5. This represents the timing requirement after the
resistor-capacitor line delay. This window is available for
devices to detect inactive -PREEMPT and exit from the Inactive
state after the rising edge of status.

6. Because no maximum is specified, a controlling master must
degate bus drivers at the end-of-transfer condition. The
end-of-transfer condition must be held stable until arbitration
begins.

Micro Channel Architecture, Channel Timing 63

Configuration Timing

This section provides the specification for critical timing parameters
for the system configuration protocol.

Setup Cycle

CH RESET /_\
ADDRESS

-SBHE
MADE 24
TR 32

M/-10 N\ ,"/,—__-_::;7J
-50 AN f

-ADL

T61 '-——' —» ’4— T62
wsw 777 N N

»' -
-CMD m_/_
Y/ Z L;m_.*

CD CHRDY (n) /ﬁ _/

64 Micro Channel Architecture, Channel Timing

Timing Parameter Min/Max Note
T60 CHRESET active (high) pulse width 100 / - ms
T61 -CD SETUP (n) active (low) to -ADL active (low) 15/ - ns
T62 -CD SETUP (n) hold from -ADL inactive (high) 25/ - ns
T63 -CD SETUP (n) hold from -CMD active (low) 30/ - ns
T65 CD CHRDY (n) inactive (low) from -CD SETUP (n) -/ 100 ns 3
active

Figure 33. Setup Cycle

Notes:

1. Only those timing parameters that are different or additional to
those specified for the basic-transfer cycle are included here.

2. The setup cycle is 300 nanoseconds minimum (default). A valid
non-adapter selecting address must be present on the bus during
system configuration.

3. A slave is allowed to extend the setup cycle beyond 300
nanoseconds using cD CHRDY. The slave qualifies the leading
edge of cD CHRDY with active status.

4. Setup cycles are restricted to 8-bit transfers.

Micro Channel Architecture, Channel Timing 65

Additional Channel Timings

Timing Parameter Min/Max Note
-CD CHRDY inactive -/35us

Card ID = 0000 (Indicating not ready) -/1 s 1
Retention of bus ownership after -PREEMPT active -/78us 2
Data steering (high 16-bit/low 16-bit data crossover) -/15 ns 3
Exiting Inactive state (driving -PREEMPT) after 0/- 4
-PREEMPT inactive and the rising edge of Status

Figure 34. Additional Channel Timings

Notes:

1. An adapter may issue an ID of hex 0000 for up to 1 second after
channel reset to indicate it is not ready. Any adapter that
continues to issue an adapter ID of hex 0000 (not ready) for more
than 1 second is considered defective.

2. Applies to bursting masters with the fairness feature active.

3. When a 16-bit master accesses a 32-bit slave, the 32-bit slave is
responsible to compensate for this added delay.

4. Applies to bursting masters (with the fairness feature active) that
were preempted and have entered the Inactive state.

66 Micro Channel Architecture, Channel Timing

Auxiliary Video Extension Timing

o e s

-BLANK N/
e XK N /D

Blue

A B Cc
Symbol Description Min. Max.
T PEL Clock Period (tclk) 28 ns 10,000 ns
T2 Clock Pulse Width High (tch) 7 ns 10,000 ns
T3 Clock Pulse Width Low (tcl) 9 ns 10,000 ns
T4 PEL Set-Up Time (tps) 4 ns -
T5 PEL Hold Time (tph) 4 ns -
T6 Blank Set-Up Time (tbs) 4 ns -
T7 Blank Hold Time (tbh) 4 ns -
T8 Analog Output Delay (taod) 3(T1) + 5 ns 3(T1) + 30 ns

Figure 35. Auxiliary Video Connector Timing (DAC Signals)

Note: See “Video Subsystem” for additional video timing information.

Micro Channel Architecture, Channel Timing 67

Notes:

68 Micro Channel Architecture, Channel Timing

Index

A

additional channel timings 66

address bus 4, 11

address bus translator 32

-ADL signal 4

ARB/-GNT signal 8, 28

arbiter mismatch 25

arbiter refresh 31

arbitration level 30, 31

arbitration timing 62

ARBO - ARB3 signal 8

asynchronous-extended cycle 47,
48

AUDIO GND signal 10

AUDIO signal 10

auxiliary video extension 17

auxiliary video extension
timing 67

auxiliary video signals 13, 22

AO - A23 signals 4

A24 - A31 signals 11

basic-transfer cycle 36
-BE signals 11, 32, 33
BLANK signal 13
-BURST signal 9

burst data transfers 23
burst DMA transfer 54
burst mode 28

burst mode timing 28
bus ownership 23

bus priority assignments 30
bus, address 4

bus, data 4

byte enable 32

C

CD CHRDY signal 7

-CD DS 16 signal 5

-CD DS 32 signal 11

-CD SETUP signal 9

-CD SFDBK signal 7

central arbitration control point 23
central steering logic 33
central translator logic 33
channel connector diagram 3
channel connector voltages and
signal assignments 15
channel connectors 2, 15, 17
channel definition 2

channel support 32

-CHCK signal 9

CHRDYRTN signal 7
CHRESET signal 10

-CMD signal 7,28
connector, auxiliary video
extension 17

connector, matched-memory
extension 19

connector, 16 bit 15
connector, 32-bit 18
connectors, channel 2
controlling master 1, 23
critical timing parameters 36
cycle, asynchronous-extended 47,
48

cycle, default 40

cycle, synchronous-extended 44

Index 69

D L

data bus 4, 11 level-sensitive interrupts 34

data bus steering 32, 33 local arbiters 24, 25, 27

DCLK signal 13

default cycle 40 M

default cycle return 42

description, micro channel 1 M/-10 signal 5

distributed arbitration 25 MADE 24 signal 5

distributed arbitration block master, controlling 1, 23
diagram 25 matched-memory connector 19

DMA channels 31 matched-memory signal

DMA timing 50 description 12

-DS 16 RTN signal 5 memory cycle 39

-DS 32 RTN signal 12 memory refresh 31

DO - D15 signals 4 micro channel description 1

D16 - D31 signal 11 -MMC signal 12

-MMC CMD signal 12
-MMCR signal 12

E multiple transfers 24
EDCLK signal 14
electromagnetic interference 2 N
ESYNC signal 13
EVIDEO signal 14 NMI 30

NMI service 31

NMI signal 31
F nominal cycle 36
fairness feature 30
first cycle after grant 50 o

OSC signal 10
H ownership, bus 23
HSYNC signal 13

P
| -PREEMPT signal 8, 29
1/0 cycle 39 preempt timing 29
inactive state 30 preemption 29
inactive state, exiting 62 PO - P7 signals 13

interrupt pending latch 34
interrupt sharing 34

-IRQ 14-15 signal 9

-IRQ 3-7 signal 9

-IRQ 9-12 signal 9

70 Index

R

-REFRESH signal 10, 31
reserved signals 3, 4

S

-SBHE signal 5

setup cycle timing 64

signal descriptions, auxiliary
video 13

signal descriptions,
matched-memory 12

signal descriptions, 16-bit 4
signal descriptions, 32-bit 11
signal groups 19

signals, reserved 3,4

single DMA transfer 52

slave 23

steering control diagram 32
synchronous-extended cycle 43,
44

system configuration timing 64
-S0, -S1 signals 5

T

-TC signal 9

timing parameters 36
timing, DMA 50

TR 32 signal 12, 32

\

VSYNC signal 13

Numerics

16-bit connectors 2
32-bit connectors 2

Index

7

Notes:

72 Index

Programmable Option Select

Description
Card Selected Feedback
SystemBoardSetup
AdapterSetup,
Adapter Identification
RequiredFields
Adapter SelectionforSetup
Adapter POS Implementation
POS Implementation Procedure
System Configuration Utilities
Automatic Configuration Utility
Change Configuration Utility
View Configuration Utility

Backup and Restore Configuration Utilities

Copy an Option Diskette Utility
Adapter DescriptionFiles
Format
Syntax
Example

Programmable Option Select |

Figures

NN

POS I/0 Address Space
POS 1/0 Address Decode

Channel-Check Active Indicator

Typical Adapter Implementationof POS
Subaddressing POS Extension Example

Syntax Symbol Key

Adapter Description File Syntax

Programmable Option Select

Description

Programmable Option Select (POS) eliminates the need for switches
from the system board and adapters by replacing their function with
programmable registers.

The System Configuration utilities (described on page 10)
automatically create configuration data for the system board and
each adapter. This is achieved by reading a unique adapter ID
number from each adapter, matching it with an adapter description
file (ADF), and configuring the system accordingly. The resulting data
and adapter ID numbers are stored in battery-backed CMOS RAM.

This data permits the power-on self-test (POST) to automatically
configure the system whenever the system is powered on. The POST
first verifies that the configuration has not changed by reading the
adapter ID numbers and comparing them with the values stored in the
battery-backed CMOS. If the configuration has changed, it is
necessary to rerun the System Configuration utilities.

The adapters and the system board setup functions all share 1/0
addresses hex 0100 through 0107.

Programmable Option Select 1

Warning:

IBM recommends that programmable options be set only through
the System Configuration utilities. Directly setting the POS
registers or CMOS RAM POS parameters can result in multiple
assignment of the same system resource, improper operation of
the feature, loss of data, or possible damage to the hardware.

Application programs should avoid using the adapter
identification (ID) whenever possible. Software compatibility
problems with systems and options may resuit.

If an adapter and the system board are in setup mode at the same
time, bus contention will occur, no useful programming can take
place, and damage to the hardware can occur.

After setup operations are complete, the Adapter Enable/Setup
register (hex 0096) should be set to hex 00, and the System Board
Enable/Setup register (hex 0094) should be set to hex FF.

The channel reset bit (bit 7) in the Adapter Enable/Setup register
must be 0 to program the adapters.

Setup functions respond to I/0 addresses hex 0100 through 0107 only
when their unique setup signal is active.

The system board does not support 16-bit 1/0 operations to 8-bit POS
registers. Using 16-bit I/0 instructions on 8-bit POS registers will
cause erroneous data to be written to or read from the registers.
Only 8-bit transfers are supported for setup operations.

2 Programmable Option Select

The following figure shows the organization of the 1/0 address space
used by the POS.

Address
(Hex) Function

0100 POS Register 0 - Adapter ldentification Byte (Low byte)
0101 POS Register 1 - Adapter Identification Byte (High byte)
0102 POS Register 2 - Option Select Data Byte 1

Bit 0 is designated as Card Enable.
0103 POS Register 3 - Option Select Data Byte 2
0104 POS Register 4 - Option Select Data Byte 3
0105 POS Register 5 - Option Select Data Byte 4

Bit 7 is designated as channel check active.

Bit 6 is designated as channel check status available.
0106 POS Register 6 - Subaddress Extension (Low byte)
0107 POS Register 7 - Subaddress Extension (High byte)

Figure 1. POS I/0 Address Space

Bits 6 and 7 of address hex 0105 and bit 0 of address hex 0102 are
fixed. All other fields within the address range of hex 0102 and 0105
are free form.

Card Selected Feedback

When the adapter is addressed, it responds by setting the Card
Selected Feedback signal (-cD SFDBK) to 0. -CD SFDBK is derived by the
adapter from the address decode, and driven by a totem pole driver.
-CD SFDBK is latched by the system board and made available on
subsequent cycles. -CD SFDBK may be used by automatic configuration
or diagnostics to verify operation of an adapter at a given set of
addresses. -CD SFDBK enables diagnostics to verify the operation of
the adapter.

System Board Setup

The integrated 1/0 functions of the system board use POS information
during the setup procedure. The bit assignments and functions may
vary from system to system (refer to the system board setup
information in the system-specific technical reference for the system
you are dealing with).

Programmable Option Select 3

Adapter Setup

The ‘-card setup’ signal (-cD SETUP (n)) is unique for each channel
connector. When -CD SETUP (n) is active, adapters recognize setup
read and write operations. The adapter decodes -CD SETUP and all
three low-order address bits (Ao through A2) to determine the POS
register to be read from or written to. -CD SETUP is enabled by an 1/0
operation on the address range 0100 through 0107. The figures in this
section show the complete address.

The setup routine (Automatic Configuration) obtains adapter
information from ADFs and uses I/0 addresses hex 0100 through 0107
to address the POS bytes of the adapter. The following figure shows
the organization of the address space used by POS during adapter
setup operations.

Address Address Bit

(Hex) -CD SETUP A2 A1A0 Function

0100 (POS Register 0) 0 0 0O Adapter Identification Byte
(Least-significant byte)

0101 (POS Register 1) 0 0 0 1 Adapter Identification Byte
(Most-significant byte)

0102 (POS Register 2) 0 010 Option Select Data (Byte 1)*

0103 (POS Register 3) 0 0 1 1 Option Select Data (Byte 2)

0104 (POS Register 4) 0 1 00 Option Select Data (Byte 3)

0105 (POS Register 5) 0 10 1 Option Select Data (Byte 4)*

0106 (POS Register 6) 0 110 Subaddress Extension
(Least-significant byte)

0107 (POS Register 7) 0 11 1 Subaddress Extension

. (Most-significant byte)
* These bytes contain one or more bits with specific assignments.

Figure 2. POS I/0 Address Decode

Bytes hex 0100 and 0101 are 8-bit read-only. Bytes hex 0102 through
0107 are 8-bit read-only and read-write.

All bits in bytes hex 0102 through 0105 are free-form,
adapter-dependent, and implemented except for the following:

¢ Hex 0102, Bit 0: Card Enable (CDEN): When this bit is set to 0, the
adapter is disabled, responding only to setup read and write
operations, and ‘channel reset’. It does not respond to 1/0 or

4 Programmable Option Select

memory read or write operations, nor does it make any interrupt
requests. When this bit is set to 1, the adapter is fully enabled.

¢ Hex 0105, Bit 7: Channel-Check Active Indicator (-CHCK): System
memory and I/0 functions that report a channel-check must set a
channel-check active indicator to identify the source of the error.
This indicator is bit 7 of address hex 0105 of each adapter POS
address space. This bit can be interrogated by the nonmaskable
interrupt (NMI) handler responding to ‘channel check’ for each
adapter position until all reporting adapters have been identified.
The following figure shows a typical implementation of the
channel-check active indicator.

Channel Check
Clear| Setting Condition
Data Bit 7 D Q
IOW —MM8 —I
AND ck

Byte AND

105H ——{_ setl Channel Reset I——

Decode _’_

IOR

!

-CD SETUP

Figure 3. Channel-Check Active Indicator

The indicator is set to 0 on a channel-check condition or when bit 7 of
POS Register 5 is set to 0. The indicator is set to 1 on a channel
reset, or when bit 7 of hex 0105 is 1. This bit may be reset by any
action occurring during the channel-check service routine. If the
channel-check active indicator is used by an attachment, hex 0105 bit
6 must be used to indicate whether additional status is available
through bytes hex 0106 and 0107.

¢ Hex 0105, Bit 6: Channel-Check Status Indicator: When set to 0,
this bit indicates channel-check exception status is available from
POS Registers 6 and 7. When set to 1, this bit indicates no status
is available. Registers 6 and 7 may be the status, a pointer to
status, or a command port to present the address elsewhere (for
example, in a subaddress area).

Bit 6 is required by all devices supporting the channel-check
active indicator (bit 7). If a device does not use the
channel-check active indicator, bit 6 may be defined to contain

Programmable Option Select 5§

device-unique information. If a device uses the channel-check
active indicator, but does not report status, bit 6 must be set to 1.

Adapter Identification

Each adapter has a unique 2-byte adapter ID. This enables
diagnostic programs, configuration utilities, and POST routines to
initialize the adapter when the system is powered on or reset.

To minimize the need for hardware, only bits driven to 0 require
drivers. Pull-up resistors on the system board provide a 1 for each
remaining bit. See “Micro Channel Adapter Design” for more
information.

Required Fields

Several fields are not assigned specific bit locations within the free
form POS bytes. However, the following are required if the adapter
supports the function:

¢ Fairness Enable Bit: All bursting devices using the arbitration
mechanism must support the fairness feature through a
programmable fairness-enable bit. The default state of this bit is
1, requiring all devices to honor the fairness feature. When
fairness-enable is set to 0, the fairness feature is disabled.

¢ Arbitration Level Field: All devices (bursting and nonbursting)
using the arbitration mechanism must support a programmable
arbitration level through a 4-bit allocation. This field allows
incorrectly prioritized devices to be reassigned by diagnostic or
system programs to reduce impacts on performance. Only one
device may be assigned to each arbitration level.

¢ Device ROM Segment Address Fleld: All I/0 devices containing
memory-mapped I/0 ROM must support a programmable Device
ROM Segment Address field. This field can be up to 4 bits and
provides the ROM of a device a starting address at any one of
sixteen 8KB segments.

¢ |/O Device Address Field: All I/0 devices that can simultaneously
reside in a system with a device of the same type must support
programmable 1/0 device addresses. This field eliminates
addressing conflicts.

6 Programmable Option Select

Adapter Selection for Setup

Each channel position has a unique ‘setup’ line (-Cb SETUP) associated
with it. See the system-specific technical references for more
information.

Adapter POS Implementation

The following figure shows how an adapter typically implements POS.
All designs must latch the least-significant bit of the
device-dependent option-select byte. Bit 7 of POS Register 5 is set to
1 unless -CHCK is active from the adapter. The remaining bits can be
implemented as required.

Note: Any adapter that POS does not completely initialize should
implement a second enable, which is activated by adapter
ROM routines or loadable software. The card-disable function
(POS Register 2, bit 0) must override a second enable.

Programmable Option Select 7

READ

I

A 02

I
CD SETUP

A01

AND

A 00

A 02
WRITE

Decoder

N W

(- =Y

e

Data

: Register

T T rrri

L

Data
Gate

8|

oo
o
J

Data
Register

P

[T IO T T N I |

Data
Gate

CDIEN

_r\
/1
I Disable Adapter

|

Decoder

| AND

Enable
Open
Collector

r
Tri-state
ID Bit
Drivers

High Byte

Figure 4. Typical Adapter Implementation of POS

Enable
Open
Collector
Oor
Tri-state
ID Bit
Drivers

Low Byte

I

The POS subaddressing extension allows the subaddressing of a
block of initial program load (IPL) or setup information.
Subaddressing bits (SADoo through sAD15) are used to address RAM, a

register stack, or other devices.

8 Programmable Option Select

The following figure shows the subaddressing extension for memory.
The counter registers increment after each least-significant byte of
option-select information is written.

AOO —] l
IOR) L SAD 15 { Data
L | | AND Register | gap 14 { Gate
L SAD 13 -]
Ao ND L SAD 12 -
02 AND | L SAD 11 4 T
CD SETUP I SAD 10
L SAD 09
¢—o AND| - SAD 08 -
[D 00-
: D07
AN .. | sADg7 { Data
+—| AND Register | gap 06 4 Gate
f— I SAD 05
I SAD 04 - J
t SAD 03 -
oW SAD 02 -
' _: > I SAD 01 - -
g anp |

- SAD 00
Clk

Figure 5. Subaddressing POS Extension Example

Gate

POS Implementation Procedure

Although the design of POS circuitry is the designer’s choice, the
following is an example of a typical POS implementation.

1. Disable interrupts.

2. Select the adapter for subsequent setup cycles. See the
system-specific technical references for more information.

3. Read the adapter ID by an I/0O read at hex 0100 and hex 0101.

4. Disable the adapter and place it in setup by performing an 1/0
write to hex 0102 with bit 0 off.

5. Write POS data to hex 0103, 0104, and 0105 in any order.
6. With bit 0 set to 1, write POS data to hex 0102.

7. Deselect the adapter. See the system-specific technical
references for more information.

8. Enable interrupts.

Programmable Option Select 9

The system microprocessor can communicate with the adapter,
provided the adapter is enabled (bit 0 at hex 0102 set to 1). After the
adapter has been set up, a subsequent I/0 write does not affect these
latches or permit the ID circuitry of the adapter to operate, unless the
adapter is returned to setup.

System Configuration Utilities

Each system has a Reference Diskette containing the System
Configuration utilities. These utilities identify the installed hardware
and interpret the system resources (/0 ports, memory, interrupt
levels, and arbitration levels) for each device. The System
Configuration utilities are contained within the Set Configuration
program.

The Reference Diskette enables the user to configure the system in
one of two ways:

¢ Running the Automatic Configuration utility after a configuration
error is displayed

¢ Selecting Set Configuration from the Main Menu.

The Set Configuration program uses information contained in adapter
description files (ADFs) to track and allocate system resources. Each
ADF describes the resources that can be allocated to a specific
adapter and the POS setting used to indicate those resource
assignments. When more than one device is configured to the same
resource and that resource cannot be shared, only one of the
conflicting devices is enabled.

ADF data for the system board and some adapters is contained on the
Reference Diskette. Before new adapters are installed, their
associated ADFs must be merged onto a backup copy of the
Reference Diskette by selecting Copy an Option Diskette from the
Main Menu and following the instructions on the screen.

Each adapter contains a 16-bit adapter ID and one to four 8-bit POS
registers. Adapter IDs and the POS information are stored in CMOS
RAM by the Set Configuration program. The CMOS RAM locations
used to hold this information are not the same for all systems. The
Set Configuration program determines the system type and handles
differences between systems such as the CMOS RAM storage and the

10 Programmable Option Select

number of available adapter slots. If the system is identified as
having only a 64-byte CMOS RAM, adapter IDs and POS data are
stored in the 64-byte CMOS RAM. Each adapter slot is allocated 2
bytes for an adapter ID and 4 bytes for POS data. If the system type is
identified as having a 2KB CMOS RAM extension, adapter IDs and
POS data are stored in the 2KB CMOS RAM.

Automatic Configuration Utility

Automatic Configuration can be run after a configuration error has
occurred or by selecting Run Automatic Configuration from the Set
Configuration menu. Each time the system is powered on, the POST
compares the configuration of the system to the configuration
indicated by CMOS RAM. If differences between the two are
detected, an error is displayed and logged in system RAM. POST
error message files contained on the Reference Diskette display text
that provides further information about the POST error.

Note: The Reference Diskette must be installed when the system is
powered on to receive POST error messages.

If a configuration error is caused by a battery failure or a bad
cyclic-redundency check (CRC), Automatic Configuration is run
immediately after the POST error is displayed. If the error is caused
by a change to the configuration, the user is given a choice to either
run Automatic Configuration or continue to the Main Menu. If the
user continues with the Main Menu, the changed areas of the system
are configured and CMOS RAM is updated when Set Configuration is
selected from the Main Menu.

Depending on the source of the error, Automatic Configuration either
reconfigures the entire system or configures only the areas of the
system that have been changed since the last time a configuration
was performed. The following POST errors cause the system to be
completely reconfigured:

¢ 161 (battery failure)
* 162 (bad CMOS CRC).

Programmable Option Select 11

The following POST errors cause only the areas of the system that
have changed to be reconfigured:

* 162 (system configuration error not caused by a bad CMOS CRC)
* 164 (memory configuration)

¢ 165 (adapter configuration).

An adapter is considered previously configured when the POS data
stored in CMOS RAM matches a POS setting in the appropriate ADF.
If an ADF for an installed adapter cannot be found, the adapter is
configured as an empty slot.

During Automatic Configuration, devices are configured to the first
nonconflicting values as defined in the ADF. Adapters are configured
in the order of the channel position in which they are installed. The
system board is configured first, followed by each adapter slot
starting with siot 1. If the interrupt level is the only resource defined
for a specific adapter item, the choice of interrupt levels that are least
used by other adapters are assigned.

Automatic Configuration does not backtrack to previously configured
adapters to resolve resource conflicts. If conflicts can be resolved,
they must be done by choosing a nonconflicting resource option
through the Change Configuration utility. Any adapter having a
resource conflict that cannot be resolved by the Set Configuration
program is disabled; the program sets bit 0 of POS Register 2 (hex
0102) to 0 in CMOS RAM.

Change Configuration Utility

The Change Configuration utility allows the user to change the default
configuration settings from those set by Automatic Configuration.
This utility is used to resolve unusual conflicts or to set items for
personal preference.

The user interface is through scrolling and paging screens. Changes
are made by rotating field value names through a set of choices using
the F5 (Previous) and F6 (Next) keys. Changes are not saved in \
CMOS until the F10 (Save) key is pressed. Help text is provided for
each item by pressing the F1 (Help) key.

12 Programmable Option Select

Resource conflicts are indicated by an asterisk (*) next to the
conflicting items and also by the “* Conflicts” string in the upper right
corner of the Change Configuration window. Conflicts with fixed
resources have the asterisk (*) to the left of the slot number of the
adapter. Adapters with conflicts are disabled; the program sets bit 0
of POS Register 2 (hex 0102) to 0 in CMOS RAM.

View Configuration Utility

The View Configuration utility is provided to view the configuration.
This is the Change Configuration utility with the change capabilities
disabled.

Backup and Restore Configuration Utilities

The Backup Configuration utility provides a means to back up the
configuration data to a file on the Reference Diskette. If the battery
fails or the battery is changed, the user can use the Restore utility to
restore the configuration.

Note: A copy of the Reference Diskette that is not write-protected is
needed for this backup and restore process.

Copy an Option Diskette Utility

The Copy an Option Diskette utility is a separate program from the
Set Configuration program and is accessible through the Main Menu.
This utility is used to merge the following files from an option diskette
onto a backup copy of the Reference Diskette: *.adf, *.dgs, *.pep,
COMMAND.COM, DIAGS.COM, CMD.COM, and SC.EXE. The files
found on the option diskette are compared to the files on the backup
copy of the Reference Diskette. If the file does not exist on the
Reference Diskette, it is copied. If the file already exists on the
Reference Diskette, the dates of the two files are compared. The file
on the option diskette is copied only if it has a date later than the
corresponding file on the Reference Diskette.

The option diskette must be a DOS formatted diskette.

Programmable Option Select 13

Adapter Description Files

Adapter description files provide POS information and system
resource information for Automatic Configuration. The adapter
description files also provide text for System Configuration utilities,
help screens, and prompts. This section provides guidelines for
developing the adapter description files.

Format

File names: @CARDID.adf (high byte of the adapter ID first).
Type of file: ASCII text.

Not case sensitive: Key words can be lowercase, uppercase, or
mixed. The case is preserved within the user interface text
strings.

Blanks, tabs, new lines: These are considered as white space
and ignored, except when in text strings for the Change
Configuration user interface.

Comments: Lines beginning with semicolons are comments and
are ignored.

Syntax

The following figure shows the meaning of special symbols used in
the adapter description file syntax.

Symbol Meaning

{}

an optional item

{3} 0,1,2,... items allowed

{}+ 1,2,3,... items allowed

x|y either x or y allowed

x{n} n x’s required

[0-9]+ one or more decimal digits

'Figure 6. Syntax Symbol Key

14

Programmable Option Select

adf_file => card_id card_name nbytes {fixed_resources} {named_item}*

This defines the contents of an ADF. The following definitions
describe each portion of an ADF in detail.

card_id => AdapterId number

Each ADF must contain a card_id. The character string
‘Adapterid’ is a keyword and must be present in the ADF.

The Configuration program looks for this ID, which must match
the ID used in the filename.

Example: Adapterid ODEFFh

card_name => AdapterName string

Each ADF must contain a card_name. The character string
‘AdapterName’ is a keyword and must be present in the ADF.

The string following the ‘AdapterName’ keyword is

displayed as the adapter name in the Change Configuration and View
Configuration screens. The length of the AdapterName string

is limited to (74 - (length of ‘SlotX - ’)) characters.

(US English length = 66 characters)

Example: AdapterName "IBM Multi-Protocol Communications Adapter"

nbytes => NumBytes number

Each ADF must contain an nbytes. The character string
‘NumBytes’ is a keyword and must be present in the ADF.
This is used to define the number of POS bytes used by

the adapter. The number of POS bytes used should include
all bytes from POS [0] to the last POS byte used. (If POS [3]
is the only POS byte defined, NumBytes should be set to 4.)
Example: NumBytes 4

fixed_resources => FixedResources pos_setting resource_setting

A fixed_resources is not a requirement for ADFs. It is used to
define resources required by an adapter and corresponding POS
data. The character string ‘FixedResources’ is a keyword and must
be present in the ADF only if the adapter needs to define

resources that it requires.

Example: FixedResources POS[1]=XXXX01XXb int 3

Figure 7 (Part 1 of 5). Adapter Description File Syntax

Programmable Option Select

15

named_item => NamedItem prompt {named_choice}+ help

A named_item is not a requirement for ADFs. The named_item

is used to define a field providing a choice of one or more resources.
Each choice sets specified POS bits to a unique setting used to
identify resources assigned to the adapter. The character string
‘Nameditem’ is a keyword and must be present in the ADF only

if the adapter can be configured to use different resources.

The adapter determines the resources it is configured to

by how the POS bytes are set. When a ‘Nameditem’ is defined

in an ADF it must be accompanied by a prompt (defined later),

Example:

NamedItem
Prompt
choice
choice
choice
choice
choice
choice
choice
choice
choice
choice
choice
choice
Help

"This port can be
secondary (SDLC2)

"SDLC_1"
"SDLC_2"

"BISYNC_1"
"BISYNC_2"
"SERIAL_1"
"SERIAL_2"
"SERIAL_3"
"SERIAL_4"
"SERIAL_5"
"SERIAL_6"
“SERIAL_7"
"SERIAL_8"

8).

prompt => Prompt string

"Communications Port"

pos [0]=XXX1000Xb
pos [0]=XXX1001Xb
pos [0]=XXX1100Xb
pos [0]=XXX1101Xb
pos [0]=XXX0000Xb
pos [0]=XXX0001Xb
pos [0]=XXX0016Xb
pos [0]=XXX0011Xb
pos [0]=XXX0100Xb
pos [0] =XXX0101Xb
pos [0]=XXX0116Xb
pos [0]=XXX0111Xb

assigned as a:

jo 0380h-038ch
io 03abh-03ach
io 0380h-038%h
io 03abh-03a%h
io 03f8h-03ffh
io 02f8h-02ffh
io 3220h-3227h
io 3228h-322fh
io 4220h-4227h
io 4228h-422fh
io 5220h-5227h
io 5228h-522fh

int
int
int
int
int
int
int
int
int
int
int
int

primary (SDLC1) or

sdlc, primary (BISYNC1) or secondary

assignment in the 'Change configuration' window.
assignments are marked with an asterisk and must be changed
to use the adapter.”

at least one named_choice (defined later), and help (defined later).

LR I R

WWWwwwwwswwww

(BISYNC2) bisync, or as a serial port (Serial 1 through Serial
Use the F5=Previous and the F6=Next keys to change this
Conflicting

The prompt is required when a Nameditem is defined. The prompt
is used to define a title for a Nameditem field. The character
string ‘Prompt’ is a keyword and must be present in the
ADF when there is a Nameditem present. The string following
the ‘Prompt’ keyword appears after the adapter name in
the Change Configuration and View Configuration screens. Following
the prompt string is a field that can be toggled in the Change

Configuration screen if two or more named_items are defined.
The length of the prompt string cannot exceed 38 characters.

Example: (See the example for named_item).

Figure 7 (Part 2 of 5). Adapter Description File Syntax

16 Programmable Option Select

named_choice => Choice choice_name pos_setting resource_setting

At least one named_choice is required when a Nameditem is defined.
The character string ‘Choice’ is a keyword and must be present

in the ADF when there is a Nameditem present. One or more
named_choices must follow a prompt. Each named_choice must
contain a string describing the current choice in the prompt

field. Each named_choice must define a pos_setting, for at least

one POS byte, which will uniquely identify the resource_setting
defined in the named_choice. The length of the named_choice

string cannot exceed 28 characters.

Example: (See the example for named_item).

help => Help string

The help is a string of text used to give the user assistance at a
prompt. This text is displayed in the Change Configuration and View
Configuration screen when the cursor is at the associated prompt and
the F1 key is pressed. The character string ‘Help’ is a keyword and
must be present in the ADF when there is a Namedltem present.

The string following the keyword ‘Help’ is the text describing

the prompt defined in the same NamedItem as the help. The length
of the help string is limited to 1000 characters.

Example: (See the example for named_item).

pos_setting => {pos_byte_setting}+

The pos_setting must contain at least one pos_byte_setting. See the
definition of pos_byte_setting for more information.

pos_byte_setting => pos[number]=pos_bit{8}b

This is the definition of the pos_byte_setting in the ADF.
The character string ‘pos’ is a keyword and must be present in a
pos_byte_setting, followed by a number in brackets. The number in
brackets refers to the following POS bytes:

number = 0, POS byte at port 102h

number = 1, POS byte at port 103h

number = 2, POS byte at port 104h

number = 3, POS byte at port 105h
The end bracket must be followed by an equal sign and then a bit
definition of the POS byte (See pos_bit for information on the bit
definition). The bit definition must define all 8 bits of the byte.
Bit 0 of pos[0] should always be defined as X in the ADF.
Example: pos[0]=XXX1001Xb

Figure 7 (Part 3 of 5). Adapter Description File Syntax

Programmable Option Select

17

pos_bit =>x | x| 0|1

A pos_bit can be defined as a mask bit (x or X), a clear bit (0), or
a set bit (1).
Example: pos[0]=XXX1001Xb
resource_setting =>

{ioblock_list} {interrupt_list} {arb_list} {memaddr_list}

The resource_setting defines a list of system resources. They may
be fixed resources required by the adapter or they may be
resources the adapter uses when configured to a specific choice
in a named_item. The resources can consist of the following:
Range of 1/0 addresses (limited to 16).
List of interrupt levels (limited to 16).
List of arbitration levels (limited to 16).
Range of memory addresses (limited to 2).
Example: (See the following resource definitions).

ioblock_list => I0 {range}+

The ioblock_list must be a list of one or more ranges of /0

addresses. The character string ‘IO’ is a keyword and must
be present in the ioblock_list.

Example: io 4220h-4227h

Interrupt_list => INT {number}+

The interrupt_list must be a list of one or more interrupt levels. The

character string ‘INT’ is a keyword and must be present in the
interrupt_list.

Example: INT 3 4

arb_list => ARB {number}+

The arb_list must be a list of one or more arbitration levels. The

character string ‘ARB’ is a keyword and must be present in the
arb_list.

Example: ARB 1

memaddr_list => MEM {range}+

The memaddr_list must be a list of one or more ranges of RAM or
ROM addresses. The character string ‘MEM’ is a keyword and must
be present in the memaddr_list. This keyword is

used to allocate memory address space in the hex 000C0000 through
hex 000DFFFF range.

Example: MEM 0CCO06h - OCDFFFh
range => number - number

Figure 7 (Part 4 of 5). Adapter Description File Syntax

18 Programmable Option Select

number => [0-9]+ {d} | [0-9a-f]+ h | [0-9A-F]+ H

string => " [ascii except for "]+ "

A string is a set of ASCII characters beginning with a double

quote (") and ending with a double quote.

Example:
"This port can be assigned as a: primary (SDLC1) or
secondary (SDLC2) sdic port, primary (BISYNC1) or secondary
(BISYNC2) bisync port, or as a serial port (Serial 1 through
Serial 8). Use the F5=Previous and the F6=Next keys to change
this assignment in the 'Change configuration' window.
Conflicting assignments are marked with an asterisk and must
be changed to use the adapter."

Figure 7 (Part 5 of 5). Adapter Description File Syntax

Programmable Option Select 19

Example

The following is an example of an adapter description file for the IBM
Personal System/2 Multiprotocol Communications Adapter/A. The
name of the file for this adapter is @DEFF.adf. An explanation of

each numbered item begins on page 21.

Adapterd GDEFFh

AdapterName "IBM Multiprotocol Communications Adapter"

NumBytes 2

NamedItem

Prompt

choice
choice
choice
choice
choice
choice
choice
choice
choice
choice
choice
choice

Help

"This port can be assigned as a: primary (SDLC1) or

"Communications Port"

"SDLC_1"

"SDLC_2"

"BISYNC_1"
"BISYNC_2"
"SERIAL_1"
"SERIAL_2"
“SERIAL_3"
"SERIAL_4"
"SERIAL_5"
"SERIAL_6"
"SERIAL_7"
"SERIAL_8"

pos [0]=XXX1000Xb
pos [0]=XXX1001Xb
pos [0]=XXX1100Xb
pos[0]=XXX1101Xb
pos [0] =XXX0000Xb
pos [0] =XXX0001Xb
pos[0]=XXX0010Xb
pos [0]=XXX0011Xb
pos [0]=XXX0100Xb
pos [0]=XXX0101Xb
pos [0]=XXX0110Xb
pos[0]=XXX0111Xb

io 0380h-038ch
io 03adh-03ach
io 0380h-038%
io 03abh-03a%h
io 03f8h-03ffh
io 02f8h-02ffh
io 3220h-3227h
io 3228h-322fh
io 4220h-4227h
io 4228h-422fh
io 5220h-5227h
io 5228h-522fh

secondary (SDLC2) sdic port, primary (BISYNC1) or secondary
(BISYNC2) bisync port, or as a serial port (Serial 1 through

Serial 8).
change this assignment.

with an asterisk and must be changed."

20 Programmable Option Select

Use the F5=Previous and the F6=Next keys to
Conflicting assignments are marked

NamedItem
Prompt "Arbitration Level for SDLC"

choice "Level_1" pos[1]=XXXX0001b arb
choice "Level_0" pos[1]=XXXX0000b arb
choice "Level_2" pos[1]=XXXX0010b arb
choice "Level_3" pos[1]=XXXX001lb arb
choice "Level_4" pos[1]=XXXX0100b arb
choice "Level_5" pos[1]=XXXX0101b arb
choice "Level_6" pos[1]=XXXX0116b arb
choice "Level_7" pos[1]=XXXX011lb arb
choice "Level_8" pos[1]=XXXX1000b arb
choice "Level_9" pos[1]=XXXX1001b arb
choice "Level_10" pos[1]=XXXX1016b arb 10
choice "Level_11" pos[1]=XXXX1011b arb 11
choice "Level_12" pos[1]=XXXX1100b arb 12
choice "Level_13" pos[1]=XXXX1101lb arb 13
choice "Level_14" pos[1]=XXXX1116b arb 14

CONOUHEWND -

Help

"This assignment need only be changed if it is in conflict
with another assignment. Conflicting assignments are marked
with an asterisk. Use the F5=Previous and the F6=Next keys
to change arbitration level assignments. Using arbitration
levels, this adapter accesses memory directly without
burdening the computer's main microprocessor. An
arbitration level of 0 has the highest priority, and
increasing levels have corresponding decreased priority"

The card_id for this adapter is hex ODEFF. This is an ASCII
representation of the ID generated by the adapter. The high byte is
followed by the low byte. The card_id is required for all ADFs.

The card_name is “IBM Multiprotocol Communications Adapter.”
The card_name is required for all ADFs.

The nbytes (NumBytes 2) in this file indicates the adapter uses
two POS bytes located at hex 0102 and 0103.

This is the first named_item for the adapter. The title of the field
is “Communications Port.” The user can toggle between the 12
named_choices. Each named_choice has a unique pos_setting
assigned to it in bit locations 1 through 4 of POS byte hex 0102

(pos [0]). Also shown is a resource_setting that corresponds to the
pos_setting of the named_choice. The resources allocated in this
named_item are |/0 addresses and interrupt levels. A help string for
this named_item is provided below the last named_choice.

Programmable Option Select 21

This is the second named_item for the adapter. The title of the
field is “Arbitration Level for SDLC.” The user can toggle between
the 15 named_choices. Each named_choice has a unique pos_setting
assigned to it in bit locations 0 through 3 of POS byte hex 0103

(pos [1]). Also shown is a resource_setting that corresponds to the
pos_setting of the named_choice. The resources allocated in this
named_item are arbitration levels. A help string for this named_item
is provided below the last named_choice.

22 Programmable Option Select

Index

A

adapter configuration, order of 12
adapter description files 1
adapter ID number 1

adapter identification 6, 10
adapter POS implementation 7
adapter setup 4,7

address decode 3

address space, POS 3

arbitration level field 6

automatic configuration 1, 4, 11

backup configuration utility 13
battery failure 11
bus contention 2

C

card enable 4

card selected feedback register 3
CD SETUP 4

CD SFDBK 3

change configuration utility 12
channel-check active indicator 5
channel-check status indicator 5
CMOS RAM, card ID bytes 10
configuration error 11
configuration utilities 6

copy an option diskette utility 13
CRC error 11

D

device ROM segment address
field 6

F

fairness enable bit 6
fairness feature 6

H

help text 12

I/0 address decode 4
I1/0 device address field 6
initial program load 8

P

POS I/0 address space 3, 4
POS overview 1

POS registers 3

POST error message files 11
power-on self-test 1

reference diskette 10
restore configuration utility 13

Index

23

S

SADO0O - SAD15 8

set configuration program 10
setup procedures 2

setup, system board 3
subaddressing bits 8
subaddressing extension 8
system board setup 3

system configuration utilities 2, 10
system resources 10

v

view configuration 13

24 Index

Micro Channel Adapter Design

General Guidelines, 1
Dimensions e 1
Power 19
Voltage Regulation 20
General Design Considerations 20
Safety e 20
Thermal 21
Electromagnetic Compatibility 21
Diagnostics 22
Design Guidelines, 22
Index 25

Micro Channel Adapter Design |

Figures

-—
COX®NDIO AWM=

Adapter Dimensions (8-or16-Bit) 2
Connector Dimensions (8-or16-Bit) 3
Adapter Dimensions (8- or 16-Bit with Video Extension) ... 4
Connector Dimensions (8- or 16-Bit with Video Extension) .. 5
Adapter Dimensions (32-Bit) 6
Connector Dimensions (32-Bit) 7
Adapter Dimensions (32-Bit with Matched Memory) 8
Connector Dimensions (32-Bit with Matched Memory) 9
Connector (CommonDetail) 10
Typical Adapter Assembly 11
AdapterHolder 12
Adapter Retainer 13
AdapterBracket 15
Channel LoadCurrent 19
Channel Voltage Regulation 20
Vendor ID Assignments 23

Micro Channel Adapter Design

General Guidelines

This section provides some basic guidelines to design adapters for
the Micro Channel architecture 16- and 32-bit products. Topics
include physical specifications, power requirements and limitations,
and configuration program support.

The system board provides channel connectors to support the
following types of adapters. Some systems do not support all types of
adapters. See the system-specific technical references for more
information.

16-bit adapter

16-bit adapter with video extension

32-bit adapter

32-bit adapter with matched-memory extension.

Connector contacts are not required for signals not used by an
adapter. See “Micro Channel Architecture” for more information on
channel connectors and signals.

Dimensions

The following figures show the dimensions of each type of adapter
and the associated mounting hardware. The tolerances shown
include all individual process tolerances and are not cumulative. The
maximum height for components mounted on the adapter is 15
millimeters (0.6 inch) on the component (A) side. The maximum
height for pins and components on the B side of the adapter is 2
millimeters (0.078 inch). Adapters using CMOS technology should
have all plated connector contacts the same length to reduce the
exposure of incorrect bias to modules.

Micro Channel Adapter Design 1

ubise(Jeidepy |suuByD OIOIN 2

(ug-91 40 -g) suojsuew|q Jeidepy ‘| 8.nb|4

(2X) 3.17+0.076 NPTH

11.500+.010

.125=.003
Permissible Ed
>0 Connector Locatlon
101 Max
€ ssmin, 3978 5o PrimaryDetum [(29 34720076 PTH
= 1.@ > E E_‘/-
3~ =~
o \: .
1 W W W W W LA W W W, W W W W W W W W W % \\\\\\\\\\\\\\\\\ﬂI B
A =
g
\]
S N
§ N B §
8 N & ©
N o
B IR Ed
z AN T .
f (ooy
8le (3X)R 1.8 Max A
e 047
[=0,
L (4X)2 45X X 0.3820.127 f%
L 86.8420.25
3411=.010
15.5420.13 107.31=0.076
b5l .812= 005 4225= 003
1112.3920.25
4.425=010
1.100 =008
202.120.254

ubiseq Jeidepy |ouuey) OIoIN

€

(11g-91 410 -g) suoisuswiq J0}08uUu0) ‘g ainbi4

1.57+0.127

" [T0e2=.005

.
(4X) (202)

AN S

INNSNY

0

L | X 1.810.25

I T 07120.1

K1)

. l (2X) 0.25 +0.13
.010+.005

N
0527 0.025 [T -~ Primary Datum [1] -
10385=.001 ®
[}
oger=0025[1] ||| 28 5 g ol
10385=.001 g é,l ¥ i e
2lg L\ IS ANE
£l
qls
AI (54X) Both Sides[1.27] [1]
1050
(56X) Both Sides 508 0.025 [1]
02,001
(58X) Both Sides .508+0.025 [1] 0.076 (.003)_e[c] [1]
1 102%.001 (56X) Both Sides
(Tab to Datum)
th Sides [i.
(2 80 O;;El E‘ [¢]0.025 (:001)_@
’ @_J (56X) Both Sides
(Tab to Tab)

E Dimensions Critical to Function
[2] component Free Area Both Sides

[3] cards Using cMOB Technology Should Make Al Card Tabs the Same
Length to Reduce the Exposure of Incorrect Bias to the Modules

ubise(Jeidepy |suuey) OIOIN T

(uoisuelx3 oepiA YHM 1ig-91 10 -8) suojsuawiq Jeidepy ‘g ainbi4

(2X) 3.17=0.076 NPTH
.125=.003

Permissible Edge

Connector Location

101 Max

35 Min

3.978

AN\

-

Primary Datum [3]
o /

W W A . W LA W W W W WA WA W . W W W W N

AW W W W W W W WA W W W W WA W . . W
—

N
N d
= § z«'
Zete N &
KIEE e \
B F|a N 8e
N i
2 Nk

Ly

(7 m

3.81:0.25
150+.010

(3X)R 1.9 Max
047
(6X)a45X X 0.38+0.127

A
58.6+0.13 |
2.307= .005
. 60.77=0.13
2.393+.005

0152 .005
15.540.13 73.85:0.13
612 =005 2011005
86.84=0.25
< 3.411=.010
107.31= 0.076 _ Prior to Plating [
4.225=,003
p-0] 112.38= 0.25
4.425=.010
281.84=0.076 _
11.100=.003
292.1=0.254

11.500=.010

3.085+.003

ubise(ie1depy |suuey) OJOIN

(uoisuelx3 08PIA YUIM 1ig-9 JO -g) SuoisuawWwiq 10}o8uuU0) “y @inbi4

(4X) 1.81=0.25

.071=0.10

1NN

EH\
Primary Datum
09270025 [1] . [
. 10365=.001
ez o 0.827:0.025 [1]
%:::') [0 |) % =
o ©® e
. g 8 ly 7|3
e 2 & 2 % N4
g % b A g
g]
i o
]
5 I
S '
(63X) Both Sides [127][1]
(] — [
2215
(2X) 0.2520.13 (66X) Both Sides .508+0.025 [1]
1010=.005 ™ 02=.001
(68X} Both Sides .508:£0.025 [+]oore (oozr @€ [3]
02=.001 (68X) Both Sides
(Tab to Datum)
1 1,
(2X) Both Sides il &
075 242 (68X) Both Sides
< (Tab to Tab)

ElDImemlons Critical to Function
Izl Component Free Area Both Sides

[3] cards using cMOS Technology Should Make All Card Tabs the Same
Length to Reducs the Expasure of Incorrect Bias to the Modules

ubiseq Jo1depy |ouuey) OIOIN 9
(ug-gg) suoisuswiq Je1depy g eunbi4

(2X) 38.17+0.076 NPTH
.125 =,003 Permissible Edge
Connector Location

101 Max
3.976
F § 2 Primary Datum [q] @) '311;;2%36 PTH
2 < /_
~
73 W \\\‘\\\'\\\\\\\\\\\\\ \\L\ARLYA\L\\X_I "_r
< N
(=]
ki
b1
3 N g/
=] 4
sl § 8 N 8
LIl \
§Ee~s N
B|os Tl N o
~ N s
N ale
? N 38
T[— -
i \ = = —
A =
ge BX)R 1.9 Max Sle
2/ 54.89 58.620.13
N (4X)A45°°)::.3803;).127 2.161 3.307 =.005
b 86.6420.25
3.411=,010
107.3120.076 __ Prior to Plating [
a3 4.225=.003
112.39+0.25
<< 4.425+.010
281.9420.076 _ [1
11.100 =.003
292.120.254

11.500+.010

(ug-2g) suoisuswiq 10}o8UU0) ‘g dInBi4

ubiseq Jeidepy [suuey) OIIN

L

(<<
0.92720.025[1] [\ primary batum ol
1.5720.127 SO0 -
1062=.005 : - e
0.927+0.025[1] SE
i) (20° o 10365 2,001 S Iy
ﬁ: ?_5 ¥ \ uy of ?
Qe -
ol HA 2
a4 _
=5
Sle (90X) Both SidesTZI[]
|~ -
e .050
92X) Both Sjdes .508+0.0251
_l._ex025+0.13 102,001]
-010.+.005 {92X) Both Sides .508 =0.025[1) ($[0.076 (00310 [C]
.02+.001 (92X) Both Sides
E] (Tab to Datum)
2X) Both Sides[1.9085]
= 075 2.275 &l [#]0.025 (.007)e]
(92X) Both Sides
(111.75) (Tab to Tab)
4.40

E Dimensions Critical to Function
E Component Free Area Both Sides

Cards Using CMOS Technology Should Make All Card Tabs the Same
Length to Reduce the Exposure of Incorrect Bias to the Modules

ubiseq ieldepy |suuey) oI 8

(2X) 3.17=0.078 NPTH

78.368+0.078

(R1owsy payotey yum 1ig-gg) suoisuewq Jeidepy 2 oinbi4

- Permissible Edi
1252.003 Connector Locaglaon
POl 101 max
c 35Min 3676 5o Z Primary Datum [3] @) #3.17=0.838 PTH
s 1378 3§ <4
3 —
l_"— m L WA W LA . W . W W W, W W W . . W \\\\\‘\Y\T\\\\\\\L%ﬁ
N 818
N
o N °
Rete N &
LA K] &‘ # \
NIg I8 N
8| K| N ig
N 2|+
N 8
| I/ ™ T ?
1 \ —
Blo A g
I (3X)R 1.9 Max sl
P 1047 g+
3B (4X) A45X X 0.38.+0.127 ‘Z’;: 0
1015+ .005 86,64+ 0.25
34115 010
107.31£0.078 Prior toPlating [
b o) 4.225%.003
112.3920.25
< 4.425=.010
281.84=0.076 [1]
11.100+.003
292.1= 0.254

11.500+.010

3.085.003

ubiseq Jeidepy jsuueyd 0IoIN

(KlowaW POYoIBN YlIM JHig-2ZE) Suoisuswiq 10198uuod ‘g ainbi4

Primary Datum [1]

E]

(7x) 90.13

5.68 =0.13
22=105

.375=.005

&l

1.57=0.127
062=.005
o)
P : v
8o EE i
j,_’ S
2k
= ~
s
(2X) 0.25+0.13
1010+ 005

(2X) Both Sides 081 (1]

075 2.475

(116.84)

[y
EI Dimensions Critical to Function
[2] component Free Area Both Sides

[[3] cards using cMOS Technology Should Make All Card Tabs the Same
Length to Reduce the Exposure of Incorrect Blas to the Modules

(92X) Both Sides
(Tab to Datum)

[0.0 (007)e] [1]
(82X) Both Sides
(Tab to Tab)

a

(4X) (209)

AN S
INNNNY

L
&:{ f
37

p-{=!
| gCl

(7X) 8+0.13
354=.005
N
J
1+£0.5
040,020

I\
Trace Before

&“‘ (2X) 0.250.13 Z Routing Operation
\lo . .
olg 520.25
4 9 .010=.005 - _%20 =010
= 5 - 1£0.5
g Plating Bar .040%.020
R TYP Both Sides
A 45 TYP Both Sides
—\ [—) /
S8 ol
=} ~ 5 1
8% $288 / | 8388)/ 1 =g
wy™N ™Y g H
it
I I
.508%0.025 [{ITYP 0.1
.02%.001 .010%.005
5 [1ITYP, 0.25+0.13
.010%.005

Figure 9. Connector (Common Detail)

10 Micro Channel Adapter Design

Bracket

Rivet
Rivet

Permissible Edge
Connector Location

Retainer

Washer

Materials:
Holder and Retainer - Polycarbonate UL 94 V-0
Bracket - AlSI Type 302 1/4 Hard Stainless Steel

Figure 10. Typical Adapter Assembly

Micro Channel Adapter Design 11

‘ o ©X)R1
@OR1 g
S i (X R0.5 — | 1117 2| ~
o R2 3| gl ®
-
L/ Y
_/ N (2X) R 2
(2X) 1.5 2 3.18 + 0.13 thru 5.3 (2X) 1.5-0.5
V820 o 4
3 10.6-0.5
14-0.5
@) R1
/— R2
\ (12X) R0.5
3.5 L.
2R OéX) a5 4X) 1.5

Figure 11. Adapter Holder

12 Micro Channel Adapter Design

(2x) 2

¥
(5X)R3 55
od
o 10
60
A\l |
Bt]
/¥ m.}
(']
_/ v
< (2X) R3.5 w| o .
@ (3X)R 2 wl S Y| @
1
A ~ 8 =~
<-—| 0
o - I
b A
2 (2X) 5-0.5
25.2 0.4
~ 13.9
. T R15
5 n
o «
I N (4X)R3.5 gl =
0")R 1

Figure 12 (Part 1 of 2). Adapter Retainer

Micro Channel Adapter Design

13

-

0.8 (+3° DRAFT/SIDE)

0.4 (+3° DRAFT)
»

|] o
S) | (2X) 1.7 +0.2
/] : N <4
(BX)R1 515)
7\ R .4
NG <
an’gd
PN
—» B [_,
(2x) 45" |
| 4.5 e N
B []
| ﬁ_" b
(2X) R 1 SPHERICAL b
2-5 ,of VIEW A-A
TYP WALL THK

@ 38 -0.2

VIEW B-B

Figure 12 (Part 2 of 2). Adapter Retainer

14 Micro Channel Adapter Design

19.1-0.25 [1]

9.55-0.13

Pl
a7

i
a7 A
\
4——b-
¢ D
[
g =
& w0
o| ¢ 3 3
& g
g
©
RS D
- D
JL.@;_ {
N B
i
(4X) R —1
221 o
(2X) 4.5 §
7
14
| 875-013 [1]
r
17.5-0.25 [1]

DIMENSION IS CRITICAL TO FUNCTION.

Figure 13 (Part 1 of 4). Adapter Bracket

Micro Channel Adapter Design 15

15.6

c 5.3 4 5 c
(4x)n1_\ y— R
(2X)R0.5\ (M gr—

1 ABLE
U
7] >
HE ﬂ \
S S
5 5 () (2X) R 0.8
8|8

£\

i | P)\
DETAIL A

i[[ﬂl\ @)R1
7.72 \-(mnz

Figure 13 (Part 2 of 4). Adapter Bracket

16 Micro Channel Adapter Design

5.9£0.13

— *
|_—— R3t1

=
1821
n5£1

2 3.05 +o.1—/

+0.25
(2x) 10 32

78.5

H
1}
4
\
\

76.36 * 0.13

2
\
¢

/ (6X) R 1 @
SR S

L <
(2X)0.25 £ 0.1 “\f\\i

25

<
?

[\

-0

(2X) 8,

89.05 * 0.5

3.05+0.1

103" 4.3810.13

+0.25
- 0.5

(2X) 10

Figure 13 (Part 3 of 4). Adapter Bracket

Micro Channel Adapter Design

17

\— ADAPTER REF

[A

VIEW C-C
(INSIDE OF FORM)
0.25 25,

R1

/

2 ©
\% I
LA \ J
0.76 3.24 \
(4X) R0.5
5
DETAIL B
SCALE 10/1
(12X)
R1
SPHERICAL
0.75+0.13
—
DETAIL A
SCALE 10/1
(12x)

Figure 13 (Part 4 of 4). Adapter Bracket

18 Micro Channel Adapter Design

Power

The allowable load current for each voltage present on each channel
connector is as follows.

Supply Maximum Current* Per Maximum Current Per
Voltage 16-Bit Connector 16/32-Bit Connector

+ 5.0 Vdc 16 A 20A

+12.0 Vdc 0.175 A 0.175 A

—12.0 Vdc 0.040 A 0.040 A

* This maximum current may not apply to all systems.

Figure 14. Channel Load Current

The following formulas can be used to determine maximum statistical
current values.

2 2
(rg, + - +lrc) + \/((’Mc1 —Ire)” + - + (Imc, — Irc,)")

Where:

* Iyc is the maximum current for each component on a given
adapter.

* /.. is the typical current for each component on a given adapter
and the sum of all /¢ equals I;,.

Note: If J,,c or I;c is not available, estimate by using: l;c = 0.7 X Iy,¢

The total channel current is also determined in a statistical manner.
Total Channel Current =

2
(lra, + -+ ’TA,,)"'\/((’MA1 - ITA1)2 + -+ (Ima, — Ira,)’)

Where:

* Iyais @ maximum statistical current for a given adapter.
* I, is the typical current for a given adapter.

Micro Channel Adapter Design 19

Voltage Regulation

The voltage regulation at the channel connector is shown in the
following figure.

Voltage Pins Tolerance
Ground A3, B3, B5, B9, B13, B17, B21, B25, B29, N/A
B33, B37, B41, A43, B45, B50, BS54, B58 N/A
A61, B63, B67, B71, B75, B79, B83, B87, N/A
A89, BM4*, AM2*
+ 5.0 vdc A7, A11, A15, A31, A39, A48, A56, A69, +5% —4.5%
A73, A81, A85
+12.0 Vdc A19, A35, A52, A65, A77, +5% —4.5%
—12.0 Vdc A23, A27 +10% —-9.5%
Ground BV1, AV3, BVS5, AV7, BV9 N/A
(Auxiliary Video)
* These connectors are in the matched-memory portion of the connector.

Figure 15. Channel Voltage Regulation

The tolerance includes all power distribution losses in both power
and ground planes, up to the pins of the channel connector. It does
not include the drop due to the connector (30 milliohm maximum per
contact), or the drop due to distribution within the adapter.

General Design Considerations

Each designer must take the precautions necessary to protect the
safety of the end user, provide reliable operation of the device, and
ensure the device does not interfere with the operation of the system
or any other installed devices. The design considerations described
in this section are not the only considerations, but rather those that
might otherwise be overlooked.

Safety

Avoid exposed high-voltage or current points, sharp edges, and
exposed components that operate at high temperatures. Devices
must not channel dc power outside the system unit in any manner
that violates Underwriters Laboratory and Canadian Standards
Association guidelines.

20 Micro Channel Adapter Design

Note: Canadian Standards Association C22.2, paragraph 4.11.3,
number 154 requires protection of conductors of external
interconnecting cords and cables connected to secondary
circuits.

IBM does not support installing or removing adapters or components
when the system power is on.

Thermal

The system unit is cooled internally by low-volume forced air.
Adapter designs must allow for adequate air space between the
adapters. Avoid using internal cables as a mechanism for signal
communication inside the system unit, they can interfere with the air
flow. If internal cables are required, they must be positioned to
minimize the impact on airflow. The maximum height for components
mounted on the adapter should not exceed the dimensions specified
under “Dimensions” on page 1. The adapter design should avoid
clustering of high-temperature components. No component should
exceed its maximum thermal rating.

Electromagnetic Compatibility

Adhere to the following guidelines to reduce electromagnetic
compatibility (EMC) problems.

* The adapter end brackets make a continuous 360° connection to
the outside “skin” of the system unit cabinet. A similar 360°
connection to the inside skin should also be provided. The
adapter bracket must not be used as a dc voltage return path, a
logic-ground connection, or an audio ground connection.

¢ The end bracket at the rear of the adapter is isolated from dc
ground on the adapter. The bracket must be grounded through a
screw connection to the system unit and designed as shown in
Figure 13 on page 15.

¢ All connector ground pins must be connected to the interplane
ground at the channel connector, and the +5 Vdc power must be
immediately connected to the +5 Vdc power plane.

¢ All adapters must provide nonsegmented internal power and
ground planes.

Micro Channel Adapter Design 21

e Each surface-mount technology module position should provide a
decoupling capacitor pad with minimal connection inductance.
Pin-in-hole modules should be decoupled if they drive or contain
edge-triggered logic. Capacitors can range between 0.01 and
0.10 microfarad and should be low-inductance ceramic or a
layered design.

¢ Internal cables should be avoided as a mechanism for signal
communication inside the system unit. The channel should not
be extended outside the system unit, except by an adapter.

¢ Clocks should be properly imbedded and terminated. When
clocks, strobes, and handshakes are generated or received, care
should be taken to control the rise-and-fall times to minimize
radiation.

¢ External cables should connect through 360° shielded D-shell or
equivalent connectors. Avoid the use of “pigtail” shield
connections. Shield terminations should be connected to the
external shield of the cable connector. Do not bring the shield
through the connector and connect it to either logic ground or the
inside skin of the cabinet.

¢ High-current power within the system unit should provide
adjacent return paths to allow the maximum cancelation of
radiated magnetic fields by the mutual coupling between the
supply and return lines.

Diagnostics

All writable registers typically are readable at the same address.
External interfaces typically include 100% diagnostic wrap capability
by electronic switching or an external wrap tool.

Design Guidelines
Adapters designed for the Micro Channel architecture must comply
with the following design guidelines:

e Each I/0 adapter must decode all 16 lines of the I/0 address.

e Each memory adapter must decode all 24 lines of the memory
address and MADE 24.

22 Micro Channel Adapter Design

¢ Each 32-bit memory adapter must decode all 32 lines of the
memory address if MADE 24 is inactive.

¢ Each adapter must replace the function of switches and jumpers
with registers that incorporate POS logic.

e Each adapter must issue an adapter ID to the data bus when
interrogated.

To minimize the number of required drivers, only the logical 0
bits in the adapter ID need to be driven. This provides 39,202
combinations with 8 drivers or less.

The following figure shows the recommended ID values for
vendors. ID values 8100 to FFFE are assigned for IBM products
only.

Note: Programs should not make decisions based on the high
nibble of the Adapter ID groupings.

D Definition
0000 Device Not Ready
0001 to OFFF Bus Master
5000 to S5FFF Direct Memory Access Devices
6000 to 6FFF Direct Program Control (Including Memory-Mapped 1/0)
7000 to 7FFF Storage*
8000 to 80FF Video
FFFF Device Not Attached
* Multiple-function adapters containing storage typically respond as storage.

Figure 16. Vendor ID Assignments

¢ Each enabled adapter must return a ‘-card selected feedback’
signal (-cD SFDBK) to the system microprocessor when an access
is made to the address space of the adapter, or when the adapter
is selected by arbitration level. -cD SFDBK must not be generated
when the ‘-card setup’ (-cD SETUP) line is active.

e Each adapter design must be capable of degating all outputs to
the system board (including -CD SFDBK, -CD DS 16/32, interrupts, and
so on) if bit 0 of POS Register 2 (hex 0102) is set to 0.

¢ Each adapter desigh must implement an open-collector driver (or
a tri-state driver gated negative-active) to drive the interrupt
request line. The design must also implement a status register
(readable at an I/0 address bit position) that remains active when

Micro Channel Adapter Design 23

the interrupt is set, and stays active until reset by the service
routine. The adapter must hold the level-sensitive interrupt
active until it is reset as a direct result of servicing the interrupt.
The service routine must not reset the interrupt controller until
after the interrupt bus signal has been reset by the adapter.

* Following a reset, each adapter must set bit 0 (Card Enable) of its
POS Register 2 to 0.

e |f applicable, the adapter can reside at an alternate address
(corresponding to one selected by switches on a Personal
Computer-type adapter).

¢ All adapters must provide adapter description files (.adf) on a
3.5-inch diskette for system configuration.

* To provide maximum portability, devices designed for arbitration
level 0 or 1 should have limited bandwidth or short bursts so
diskette overruns can be prevented or recovered by retry
operations. The diskette drive controller on arbitration level 2
may be held inactive by devices on levels 0 and 1, by a refresh
operation, and by the previous controlling master. The diskette
drive controller should not be held inactive for more than 12
microseconds to prevent overrun.

¢ Adapter designs should not extend the card-edge connector
beyond the basic 16- or 32-bit connector unless the signals
provided by the extension are used by the adapter.

24 Micro Channel Adapter Design

Index

A

adapter bracket 15

adapter design 1

adapter design considerations 20
adapter diagnostics 22

adapter dimensions 1,2

adapter holder 12

adapter retainer 13

assembly, typical adapter 11
assignments, recommended 23

bracket, adapter 15

o

channel load current 19

circuit protection, secondary 21
CMOS technology 1
compatibility, electromagnetic 21
component height 1

conductor protection 21
connector description 10
connector dimensions 3
connector, common detail 10

D

design considerations 20
design guidelines 22

design, adapter 1
diagnostics 22

dimensions, adapter 1,2
dimensions, connector 3
dimensions, video adapter 4
dimensions, video connector 5§

E

electromagnetic compatibility 21

F

formula, maximum statistical
current 19

formula, total channel current 19

G

guidelines, design 22

H

height of components 1
holder, adapter 12

L

load current 19

maximum statistical current
formula 19
micro channel adapter design

P

power specifications 19
protection of conductors 21

Index

1

25

recommended assignments 23
regulation, voltage 20
retainer, adapter 13

S

safety 20
secondary circuit protection 21
specifications, power 19

T

technology, CMOS 1

thermal 21

total channel current formula 19
typical adapter assembly 11

v

video adapter dimensions 4
video connector dimensions 5
voltage regulation 20

Numerics

16-bit adapter 1

16-bit adapter with video 1

32-bit adapter 1

32-bit adapter with
matched-memory extension 1

26 Index

Microprocessors and Instruction Sets

80286 Microprocessor 1
Real-AddressMode 1
Protected Virtual AddressMode 2

80287 Math Coprocessor s 2
ProgrammingiInterface- 3
Hardwarelinterface, 3

80386 Microprocessor 5
Real AddressMode, 5
Protected Virtual AddressMode 6
Virtual 8086 Mode 7
80386 Paging Mechanism 8

80387 Math Coprocessoriuuuuuuonon 10
Programming Interface 11
Hardwarelinterface 12

80286 Microprocessor InstructionSet 14
DataTransfer, 14
Arithmetic 18
LogiC e 22
String Manipulation L 24
Control Transfer 26
ProcessorControl 30
ProtectionControl 32

80287 Math Coprocessor InstructionSet 35
DataTransfer 35
Comparison e 37
Constants 38
Arithmetic 39
Transcendental, 40
ProcessorControlo, 41

Introduction to the 80386 InstructionSet 43
Code and Data Segment Descriptors 43
Prefixes e 44
InstructionFormat 45
Encoding 46
AddressMode e 47
Operand Length (W) Field 50
Segment Register (sreg) Field 51
General Register (reg) Field 51
Operation Direction (d) Field 52

Microprocessors and Instruction Sets |

Sign-Extend (s) Field
Conditional Test (tttn) Field
Control, Debug, or Test Register (eee) Field
80386 Microprocessor InstructionSet
DataTransfer
SegmentControl
FlagControl e
Arithmetic
Logic e
String Manipulation
Repeated String Manipulation
Bit Manipulation,
Control Transfer
ConditionalJumps,
Conditional ByteSet
Interrupt Instructions
ProcessorControl
Processor Extension
Prefix Bytes
ProtectionControl
Introduction to the 80387 InstructionSet
80387 Usage of the Scale-Index-BaseByte
Instruction and Data Pointers
New Instructions
80387 Math Coprocessor InstructionSet
Data Transfer
Comparison
Constants e
Arithmetic
Transcendental,
ProcessorControl

il Microprocessors and Instruction Sets

Figures

-
COPNIOR LN

[i G G Gy
RS o

17.
18.
19.
20.
21.
22,
23.
24,
25.
26.
27.
28.

80287 Data Types ittt
80386 Addressing,
Paging Mechanism
Data Type Classifications and Instructions
80387 DataTypes iieununnn..
2-BitRegisterField
3-Bit Register Field
80287 Encoding Field Summary
80386 Code and Data Segment Descriptor Format
Instruction Format
80386 Instruction Set Encoding Field Summary
Effective Address (16-Bit and 32-Bit Address Modes) .
Scale Factor (s-i-b Byte Present)
Index Registers (s-i-b Byte Present)
Base Registers (s-i-b Byte Present)
Effective Address (32-Bit Address Mode — s-i-b Byte
Present)
Operand Length Field Encoding
Segment Register Field Encoding
General Register FieldEncoding
Operand Direction Field Encoding
Sign-Extend Field Encoding
Conditional Test Field Encoding
Control, Debug, and Test Register Field Encoding
80387 Encoding Field Summary
Instruction and Pointer Image (16-Bit Real Address Mode)
Instruction and Pointer Image (16-Bit Protected Mode)
Instruction and Pointer Image (32-Bit Real Address Mode)
Instruction and Pointer Image (32-Bit Protected Mode)

Microprocessors and Instruction Sets

50
51
51
51
52
52
53
53
86
88
88
88
89

Notes:

v Microprocessors and Instruction Sets

80286 Microprocessor

The 80286 microprocessor subsystem has the following:

® 24-bit address

¢ 16-bit data interface

¢ Extensive instruction set, including string I/0

¢ Hardware fixed-point multiply and divide

¢ Two operational modes:
— 8086-compatible Real Address
— Protected Virtual Address.

* 16MB (MB equals 1,048,576 or 220 bytes) of physical address
space

* 1GB (GB equals 1,073,741,824 or 230 bytes) of virtual address
space.

Real-Address Mode

In the real-address mode, the address space of the system
microprocessor is a contiguous array of up to TMB. The system
microprocessor generates 20-bit physical addresses to address
memory.

The segment portion of the pointer is interpreted as the upper 16 bits
of a 20-bit segment address; the lower 4 bits are always 0. Therefore,
segment addresses begin on multiples of 16 bytes.

All segments in the real-address mode are 64KB (KB equals 1024
bytes) and can be read, written, or executed. An exception or
interrupt can occur if data operands or instructions attempt to wrap
around the end of a segment (for example, a word with its low-order
byte at offset hex FFFF and its high-order byte at hex 0000). If, in the
real-address mode, the information contained in the segment does
not use the full 64KB, the unused end of the segment can be overlaid
by another segment to reduce physical memory requirements.

80286 Microprocessor 1

Protected Virtual Address Mode

The protected virtual address mode (hereafter called protected mode)
offers extended physical and virtual memory address space, memory
protection mechanisms, and new operations to support operating
systems and virtual memory.

The protected mode provides a virtual address space of 1GB for each
task mapped into a 16MB physical address space. The virtual
address space may be larger than the physical address space,
because any use of an address that does not map to a physical
memory location will cause a restartable exception.

Like the real-address mode, the protected mode uses 32-bit pointers,
consisting of 16-bit selector and offset components. The selector
specifies an index into a memory-resident table rather than the upper
16 bits of a real address. The 24-bit base address of the desired
segment is obtained from a table in memory. The 16-bit offset is
‘added to the segment base address to form the physical address.
The system microprocessor automatically refers to the tables
whenever a segment register is loaded with a selector. All
instructions that load a segment register refer to the table without
additional program support. Each entry in a table is 8-bytes.

80287 Math Coprocessor

The optional 80287 Math Coprocessor enables the system to perform
high-speed arithmetic, logarithmic, and trigonometric operations.
The coprocessor works in parallel with the microprocessor. The
parallel operation decreases operating time by allowing the
coprocessor to do mathematical calculations while the
microprocessor continues to do other functions.

The coprocessor works with seven numeric data types, which are
divided into the following three classes:

¢ Binary integers (three types)
¢ Decimal integers (one type)
¢ Real numbers (three types).

2 80287 Math Coprocessor

Programming Interface

The coprocessor offers extended data types, registers, and
instructions to the microprocessor. The coprocessor has eight 80-bit
registers, which provide the equivalent capacity of forty 16-bit
registers. This register space allows constants and temporary results
to be held in registers during calculations, thus reducing memory
access, improving speed, and increasing bus availability. The
register space can be used as a stack or as a fixed register set.

When used as a stack, only the top two stack elements are operated
on.

The following figure shows representations of large and small
numbers in each data type.

Significant
Digits

Data Type Bits (Decimal) Approximate Range (Decimal)
Word Integer 16 4 -32,768 < x < +32,767
Short Integer 32 9 2x10° <x< +2x10°
Long Integer 64 19 -9x 101 <x< +9x 108
Packed Decimal 80 18 -9..99 < x £ +9..99 (18 digits)
Short Real * 32 6-7 8.43x 107 < x <3.37x10%
Long Real * 64 15- 16 4.19x 1073°7 < x < 1.67 x 1038
Temporary Real ** 80 19 3.4 x 1074932 < x < 1.2 x 104932
* The Short Real and Long Real Data Types Correspond to the Single- and
Double-precision Data Types.
** The Temporary Real Data Type Corresponds to the Extended-precision Data
Type.

Figure 1. 80287 Data Types
Hardware Interface

The coprocessor uses the same clock generator as the
microprocessor and operates in the asynchronous mode. The
coprocessor is wired so that it functions as an 1/0 device through I/0
port addresses hex 00F8, 00FA, and 00FC. The microprocessor sends
opcodes and operands through these 1/0 ports. It also receives and
stores results through the same 1/0 ports. The coprocessor ‘busy’
signal informs the microprocessor that it is executing; the

80287 Math Coprocessor 3

microprocessor Wait instruction forces the microprocessor to wait
until the coprocessor is finished executing.

The coprocessor detects six different exception conditions that can
occur during instruction execution:

Invalid operation
Denormal operand
Zero-divide
Overflow
Underflow
Precision.

If the appropriate exception mask bit within the coprocessor is not
set, the coprocessor activates the ‘error’ signal. The ‘error’ signal
generates a hardware interrupt (IRQ 13) causing the ‘busy’ signal to
be held in the busy state. The ‘busy’ signal may be cleared by an
8-bit 1/0 Write command to address hex 00F0, with b7 through Do
equal to 0. This action also clears IRQ 13.

The power-on self-test code in the system ROM enables IRQ 13 and
sets up its vector to point to a routine in ROM. The ROM routine
clears the ‘busy’ signal latch and then transfers control to the address
pointed to by the non-maskable interrupt (NMI) vector. This
maintains code compatibility across the IBM Personal Computer and
Personal System/2 product lines. The NMI handler reads the
coprocessor status to determine if the coprocessor generated the
NMI. If it wasn’t generated by the coprocessor, control is passed to
the original NMI handler.

The coprocessor has two operating modes: real-address mode and
protected mode. They are similar to the two modes of the
microprocessor. The coprocessor is in the real-address mode if reset
by a power-on reset, system reset, or I/O write operation to port hex
00F1. This mode is compatible with the 8087 Math Coprocessor used
in IBM Personal Computers. The coprocessor is placed in the
protected mode by executing the SETPM ESC instruction. It is placed
back in the real-address mode by an 1/0 write operation to port hex
00F1, with D7 through DO equal to 0.

Detailed information for the internal functions of the 80287 Math

Coprocessor is in the books listed in the Bibliography. Also see
“Compatibility” for more information.

4 80287 Math Coprocessor

80386 Microprocessor

The 80386 microprocessor subsystem has the following:

32-bit address

32-bit data interface

Extensive instruction set, including string 1/0
Hardware fixed-point multiply and divide
Three operational modes:

— Real Address

— Protected Virtual Address

— Virtual 8086.

* 4GB of physical address space

¢ 8 general-purpose 32-bit registers

e 64TB (TB equals 1,099,511,627,776 or 240 bytes) of total
virtual-address space.

e o o o o

Real Address Mode

In the real-address mode, the address space of the system
microprocessor is a contiguous array of up to 1MB. The system
microprocessor generates 20-bit physical addresses to address
memory.

The segment portion of the pointer is interpreted as the upper 16 bits
of a 20-bit segment address; the lower 4 bits are always 0. Therefore,
segment addresses begin on multiples of 16 bytes.

All segments in the real-address mode are 64KB and can be read,
written, or executed. An exception or interrupt can occur if data
operands or instructions attempt to wrap around the end of a segment
(for example, a word with its low-order byte at offset hex FFFF and its
high-order byte at hex 0000). If, in the real-address mode, the
information contained in the segment does not use the full 64KB, the
unused end of the segment can be overlaid by another segment to
reduce physical memory requirements.

80386 Microprocessor 5

Protected Virtual Address Mode

The protected virtual-address mode offers extended physical and
virtual memory address space, memory protection mechanisms, and
new operations to support operating systems and virtual memory.

The protected mode provides up to 64TB of virtual address space for
each task mapped into a 4GB physical address space.

From a programmer’s point of view, the main difference between the
real-address mode and protected mode is the increased address
space and the method of calculating the base address. The protected
mode uses 32- or 48-bit pointers, consisting of 16-bit selector and 16-
or 32-bit offset components. The selector specifies an index into one
of two memory-resident tables, the global descriptor table (GDT) or
the local descriptor table (LDT). These tables contain the 32-bit base
address of a given segment. The 32-bit effective offset is added to the
segment base address to form the physical address. The system
microprocessor automatically refers to the tables whenever a
segment register is loaded with a selector. All instructions that load
a segment register refer to the memory-resident tables without
additional program support. The memory-resident tables contain
8-byte values called descriptors.

The paging option provides an additional way of managing memory in
the very large segments of the 80386. Paging operates in the
protected mode only, beneath segmentation. The paging mechanism
translates the protected linear address (which comes from the
segmentation unit) into a physical address. When paging is not
enabled, the physical address is the same as the linear address. The
following figure shows the 80386 addressing mechanism.

6 80386 Microprocessor

32- or 48-Bit Pointer

Selector Offset Physical Memory
(16 Bits) | (16 or 32 Bits) 4G
Linear Physical
Address :ggﬁ‘sg Address
Descriptor Mechanism Memory Operand
(Optional)
LDT or GDT
0

Figure 2. 80386 Addressing

Virtual 8086 Mode

The virtual-8086 mode ensures compatibility of programs written for
8086- and 8088-based systems by establishing a protected 8086
environment within the 80386 multitasking framework.

Since the address space of an 8086 is limited to 1MB, the logical
addresses generated by the virtual-8086 mode lie within the first 1IMB
of the 80386 linear address space. To support muitiple virtual-8086
tasks, paging can be used to give each virtual-8086 task a 1TMB
address space anywhere in the 80386 physical address space.

On a task-by-task basis, the value of the virtual-8086 flag (VM86 flag
in the Flags register) determines whether the 80386 behaves as an
80386 or as an 8086. Some instructions, such as Clear Interrupt Flag,
can disrupt all operations in a multitasking environment. The 80386
raises an exception when a virtual-8086 mode task attempts to
execute an |/O instruction, interrupt-related instruction, or other
sensitive instruction. Anytime an exception or interrupt occurs, the
80386 leaves the virtual 8086 mode, making the full resources of the
80386 available to an interrupt handler or exception handler. These
handlers can determine if the source of the exception was a
virtual-8086 mode task by inspecting the VM86 flag in the Flags image
on the stack. If the source is a virtual-8086 mode task, the handler

80386 Microprocessor 7

calls on a routine in the operating system to simulate an 8086
instruction and return to the virtual-8086 mode.!

80386 Paging Mechanism

The 80386 uses two levels of tables to translate the linear address
from the segmentation unit into a physical address. There are three
components to the paging mechanism:

¢ Page directory
¢ Page tables
¢ Page frame (the page itself).

The following figure shows how the two-level paging mechanism

works.
4ﬂ<
80386 L/
31 22 12 0 >
Directory TTable {Offset I 4K
Linear
Address —
I
4K
3 0 Address Physical
31 0 Page
1 0 > =
CRO \
CR1 Page
—}—R Frame 4K
CR2 Page Table Address
CR3 |ROOT -
Page Directory / \/
Control Registers /: ,
0
Physical
Memory

Figure 3. Paging Mechanism

CR2 is the Page-Fault Linear-Address register. It holds the 32-bit
linear address that caused the last detected page fault.

1 The routine in the operating system, called a virtual machine monitor,
simulates a limited number of 8086 instructions.

8 80386 Microprocessor

CRa3 is the Page Directory Physical Base Address register. It
contains the physical starting address of the page directory.

The page directory is 4KB and allows up to 1024 page-directory
entries. Each page-directory entry contains the address of the next
level of tables, the page tables, and information about the page
tables. The upper 10 bits of the linear address (A22 through A31) are
used as an index to select the correct page-directory entry.

Each page table is 4KB and holds up to 1024 page-table entries.
Page-table entries contain the starting address of the page frame and
statistical information about the page. Address bits A12 through A21
are used as an index to select one of the 1024 page-table entries.
The upper 20 bits of the page-frame address (from the page-table
entry) are linked with the lower 12 bits of the linear address to form
the physical address. The page-frame address bits become the
most-significant bits; the linear-address bits become the
least-significant bits.

80386 Microprocessor 9

80387 Math Coprocessor

The optional 80387 Math Coprocessor enables the system to perform
high-speed arithmetic, logarithmic, and trigonometric operations.
The 80387 effectively extends the 80386 register and instruction set
for existing data types and also adds several new data types. The
following figure shows the four data type classifications and the
instructions associated with each.

Classification Size Instructions

Integer 16, 32, 64 Bits Load, Store, Compare, Add, Subtract,
Multiply, Divide

Packed BCD* 80 Bits Load, Store

Real 32, 64 Bits Load, Store, Compare, Add, Subtract,
Multiply, Divide

Temporary Real 80 Bits Add, Subtract, Multiply, Divide, Square

Root, Scale, Remainder, Integer Part,
Change, Sign, Absolute Value, Extract
Exponent and Significand, Compare,
Examine, Test, Exchange Tangent,
Arctangent, 2X—1, Y*Log, (X+1),
Y*Logsy (X), Load Constant (0.0, =, etc.),
Sine, Cosine, Unordered Compare

* BCD = Binary-coded decimal

Figure 4. Data Type Classifications and Instructions

The 80386/80387 configuration fully conforms to the ANSI2 and IEEE?
floating-point standard and are upward, object-code compatible from
80286/80287- and 8086/8087-based systems.

2 American National Standards Institute

3 Institute of Electrical and Electronics Engineers

10 80387 Math Coprocessor

Programming Interface

The 80387 is not sensitive to the processing mode of the 80386. The
80387 functions the same whether the 80386 is executing in
real-address mode, protected mode, or virtual-8086 mode. All
memory access is handled by the 80386; the 80387 merely operates
on instructions and values passed to it by the 80386.

All communication between the 80386 and 80387 is transparent to
application programs. The 80386 automatically controls the 80387
whenever a numeric instruction is executed. All physical and virtual
memory is available for storage of instructions and operands of
programs that use the 80387. All memory address modes, including
use of displacement, base register, index register, and scaling are
available for addressing numeric operands.

The coprocessor has eight 80-bit registers. The total capacity of
these eight registers is equivalent to twenty 32-bit registers. This
register space allows constants and temporary results to be held in
registers during calculations, thus reducing memory access,
improving speed, and increasing bus availability. The register set
can be used as a stack or as a fixed register set. When itis used as a
stack, only the top two stack elements are operated on.

80387 Math Coprocessor 11

The following figure shows the seven data types supported by the
80387 Math Coprocessor.

Data Type Range Precision
Word Integer 104 16 Bits
Short Integer 108 32 Bits
Long Integer 1019 64 Bits
Packed BCD 1018 18 Digits (2 digits per byte)
Single Precision 10138 24 Bits
(Short Real)

Double Precision 104308 53 Bits
(Long Real)

Extended Precision 10+4932 64 Bits
(Temporary Real)

Figure 5. 80387 Data Types
Hardware Interface

The 80387 Math Coprocessor uses the same clock generator as the
80386 system microprocessor. The coprocessor is wired so that it
functions as an 1/0 device through 1/0 port addresses hex 00F8, 00FA,
and 00FC. The system microprocessor sends opcodes and operands
through these I/0 ports. The coprocessor ‘busy’ signal informs the
system microprocessor that it is executing; the system
microprocessor Wait instruction forces the system microprocessor to
wait until the coprocessor is finished executing.

The coprocessor detects six different exception conditions that can
occur during instruction execution:

¢ Invalid operation
Denormal operand
Zero-divide
Overflow
Underflow
Precision.

If the appropriate exception mask bit within the coprocessor is not
set, the coprocessor activates the ‘error’ signal. The ‘error’ signal

12 80387 Math Coprocessor

generates a hardware interrupt (IRQ 13) causing the ‘busy’ signal to
be held in the busy state. The ‘busy’ signal may be cleared by an
8-bit 1/0 Write command to address hex 00F0, with b7 through Do
equal to 0. This action also clears IRQ 13.

The power-on self-test code in the system ROM enables IRQ 13 and
sets up its vector to point to a routine in ROM. The ROM routine
clears the ‘busy’ signal latch and then transfers control to the address
pointed to by the (NMI) vector. This maintains code compatibility
across the IBM Personal Computer and Personal System/2 product
lines. The NMI handler reads the status of the coprocessor to
determine if the coprocessor generated the NMI. If it wasn’t
generated by the coprocessor, control is passed to the original NMI
handler.

Detailed information about the internal functions of the 80387 Math

Coprocessor is in the books listed in the Bibliography. Also see
“Compatibility” for more information.

80387 Math Coprocessor 13

80286 Microprocessor Instruction Set

Data Transfer

MOV = Move

Register to Register/Memory
|1000100w | modregrm |

Register/Memory to Register
|1000101w Imodregrlm J

Immediate to Register/Memory

[1100011w | mod 000 r/m | data | dataifw = 1

Immediate to Register
[1011wreg | data | dataitw =1 |

Memory to Accumulator
[1010000w | addr-low | addr-high |

Accumulator to Memory
[1010001w | addr-iow | addr-high |

Register/Memory to Segment Register
[10001110 | modoregrim |

Segment Register to Register/Memory
[10001100 | modoregrim |

14 80286 Instruction Set

PUSH = Push

Memory

[11111111

[mod110rw |

Register

|£010reg

Segment Register

[000reg110

Immediate

01101050

| data

dataifs = 0

PUSHA = Push All

01100000

POP = Pop

Register/Memory

[10001111

| modooorm |

Register

m011reg

Segment Register

[000reg111

|reg¢01

80286 Instruction Set

15

POPA = Pop All

01100001

XCHG = Exchange

Register/Memory with Register

[1000011w | mod reg r/m

Register with Accumulator
[10010reg |

IN = Input From

Fixed Port

[1110010w | port

Variable Port
[1110110w |

OUT = Output To

Fixed Port

[1110011w | port

Variable Port
[1110111w |

XLAT = Translate Byte to AL

[11010111 |

16 80286 Instruction Set

LEA = Load EA to Register

[10001101 mod reg r/m

LDS = Load Pointer to DS

[11000101 | mod reg r/m mod # 11 B

LES = Load Pointer to ES

[11000100 | mod reg r/m mod # 11 |

LAHF = Load AH with Flags

[10011111 |

SAHF = Store AH with Flags

|1oo1111o |

PUSHF = Push Flags

[10011100 |

POPF = Pop Flags

|1oo111o1 |

80286 Instruction Set 17

Arithmetic

ADD = Add

Register/Memory with Register to Either
[000000dw | mod reg r/m |

Immediate to Register/Memory

[100000sw | modooorm | data | dataifsw =01

Immediate to Accumulator
[0000010w | data | dataifw = 1 |

ADC = Add with Carry

Register/Memory with Register to Either
|000100dw lmodregrlm |

Immediate to Register/Memory

[100000sw | mod010wm | data | dataifsw =01

Immediate to Accumulator
[0001010w | data | dataifw = 1 |

INC = Increment

Register/Memory
[1111111w [mod000r/m

Register
[01000req |

18 80286 Instruction Set

SUB = Subtract

Register/Memory with Register to Either

|001010dw |modregrlm j

Immediate from Register/Memory

| 100000sw | mod 101 w/m

l data

| dataifsw =01

Immediate from Accumulator

[0010110w | data

| data it w = 1

SBB = Subtract with Borrow

Register/Memory with Register to Either

[000110dw | mod reg r/m

Immediate from Register/Memory

[100000sw | mod011r/m

I data

| data ifsw = 01

Immediate from Accumulator

[0001110w | data

| dataifw = 1

DEC = Decrement

Register/Memory

[1111111w | mod 001 r/m

Register
[01001reg |

80286 Instruction Set

19

CMP = Compare

Register/Memory with Register
|0011101w lmodregrlm I

Register with Register/Memory
[0011100w [modregr/m |

Immediate with Register/Memory

r1000003w [mod 111rm | data | dataitsw =101

Immediate with Accumulator
[0011110w [data | dataifw = 1]

NEG = Change Sign

|1111o11w | mod011w/m |

AAA = ASCII Adjust for Add

[00110111 |

DAA = Decimal Adjust for Add

00100111]

AAS = ASCII Adjust for Subtract

|oo111111 |

DAS = Decimal Adjust for Subtract

00101111 |

20 80286 Instruction Set

MUL = Multiply (Unsigned)

|1111011w [moa100r/m]

IMUL = Integer Mulitiply (Signed)

[1111011w | mod 101 r/m]

IIMUL = Integer Inmediate Multiply (Signed)

|01101031 Imodregr/m ldata

ldataifs =0

DIV = Divide (Unsigned)

|1111011w |mod110r/m]

IDIV = Integer Divide (Signed)

[1111011w |mod111r/m J

AAM = ASCII Adjust for Mulitiply

[11010100 [o00001010 [

AAD = ASCII Adjust for Divide

[11010101 |00001010]

CBW = Convert Byte to Word

[10011000 |

CWD = Convert Word to Doubleword

[10011001 |

80286 Instruction Set

21

Logic
Shift/Rotate Instructions

Register/Memory by 1
[1101000w | modTTTm |

Register/Memory by CL

[1101001w [modTTTim |
Register/Memory by Count
[1100000w [modTTTrm | count
TTT Instruction
000 ROL
001 ROR
010 RCL
011 RCR
100 SHL/SAL
101 SHR
111 SAR
AND = And

Register/Memory and Register to Either
|001000dw lmodregrlm I

Immediate to Register/Memory

|1000000w | mod 100 r/m | data | dataifw =1

Immediate to Accumulator
[0010010w | data | dataifw = 1 [

22 80286 Instruction Set

TEST = AND Function to Flags; No Resuit

Register/Memory and Register
| 1000010w [modregrim |

Immediate Data and Register/Memory
[1111011w [modo0oorm | data | dataifw = 1

Immediate Data and Accumulator
[1010100w | data | data ifw = 1 |

Or = Or

Register/Memory and Register to Either
l000010dw |modregrlm I

Immediate to Register/Memory
[1000000w [mod001wm | data | dataifw = 1

Immediate to Accumulator
[0000110w | data | dataifw = 1 |

XOR = Exclusive OR

Register/Memory and Register to Either
|001100dw | mod reg r/m [

Immediate to Register/Memory
[1000000w | mod110mm | data | dataifw = 1

Immediate to Accumulator
[0011010w | date | dataifw = 1 |

80286 Instruction Set 23

NOT = Invert Register/Memory

[1111011w | mod010w/m

String Manipulation

MOVS = Move Byte Word

|1o1oo10w |

CMPS B/W = Compare Byte/Word

[1010011w |

SCAS = Scan Byte/Word

|1010111w |

LODS = Load Byte/Word to AL/AX

[1010110w |

STOS = Store Byte/Word from AL/AX

|1o1o1o1w |

INS = Input Byte/Word from DX Port

o110110w |

OUTS = Output Byte/Word to DX Port

[o110111w |

24 80286 Instruction Set

REP/REPNE, REPZ/REPNZ = Repeat String

Repeat Move String

|1111oo11 [1010010w

Repeat Compare String (z/Not z)

[11110012 |1010011w

Repeat Scan String (z/Not z)

|1111001z]1010111w

Repeat Load String

[11110011 [1010110w

Repeat Store String

[11110011 [1010101w

Repeat Input String

[11110011 |o110110w
Repeat Output String
|1111oo11 |o11o111w

80286 Instruction Set

25

Control Transfer

CALL = Call

Direct within Segment

[11101000 | disp-low | disp-high

Register/Memory Indirect within Segment
[11111111 | mod010wm |

Direct Intersegment

10011010 Segment Offset Segment
Selector

Indirect Intersegment

11111111 mod 01 1 r/m (mod # 11)

JMP = Unconditional Jump

Short/Long
[11101011 | disp-low |

Direct within Segment

[11101001 | disp-low | disp-high

Register/Memory Indirect within Segment
(11111111 [mod1oorm |

Direct Intersegment

11101010 Segment Offset Segment
Selector

26 80286 Instruction Set

Indirect Intersegment

[11111111 mod 10 1 r/m (mod # 11)

RET = Return from Call

Within Segment
[11000011]

Within Segment Adding Immediate to SP

[11000010 | data-low data-high

Intersegment
| 11001011]

Intersegment Adding Immediate to SP

11001010 | data-tow | data-high

JE/NNZ = Jump on Equal/Zero

01110100 | disp |

JL/UNGE = Jump on Less/Not Greater, or Equal

|o11111oo | disp |

JLE/UNG = Jump on Less, or Equal/Not Greater

01111110 | disp |

JB/UJNAE = Jump on Below/Not Above, or Equal

01110010 | disp B

80286 Instruction Set

27

JBE/JNA = Jump on Below, or Equal/Not Above

01110110 | disp |

JP/JPE = Jump on Parity/Parity Even

01111010 | disp |

JO = Jump on Overfiow

01110000 | disp |

JS = Jump on Sign

01111000 | disp |

JNE/JNZ = Jump on Not Equal/Not Zero

01110101 [disp |

JNL/JGE = Jump on Not Less/Greater, or Equal

01111101 | disp [

JNLE/JG = Jump on Not Less, or Equal/Greater

01111111 | disp |

JNB/JAE = Jump on Not Below/Above, or Equal

01110011 | disp]

JNBE/JA = Jump on Not Below, or Equal/Above

01110111 | disp |

28 80286 Instruction Set

JNP/JPO = Jump on Not Parity/Parity Odd

01111011 | disp |

JNO = Jump on Not Overflow

01110001 | disp |

JNS = Jump on Not Sign

01111001 | disp |

LOOP = Loop CX Times

[11100010 | disp |

LOOPZ/LOOPE = Loop while Zero/Equal

[11100001 [aisp |

LOOPNZ/LOOPNE = Loop while Not Zero/Not Equal

[11100000 [aisp |

JCXZ = Jump on CX Zero

[11100011 | disp |

ENTER = Enter Procedure

[11001000 | data-tow | data-high

LEAVE = Leave Procedure

[11001001 |

80286 Instruction Set

INT = Interrupt

Type Specified
[11001101 | type

Type 3
[11001100 |

INTO = Interrupt on Overflow

[11001110 |

IRET = Interrupt Return

[11001111 |

BOUND = Detect Value Out of Range

01100010 | mod reg rim

Processor Control

CLC = Clear Carry

[11111000 |

CMC = Complement Carry

[11110101 |

STC = Set Carry

[11111001 |

30 80286 Instruction Set

CLD = Clear Direction

[11111100 |

STD = Set Direction

|111111o1 l

CLI = Clear Interrupt

[11111010 |

STl = Set Interrupt Enable Flag

[11111011]

HLT = Halt

[11110100]

WAIT = Walt

|1oo11o11 |

LOCK = Bus Lock Prefix

[11110000 |

CTS = Clear Task Switched Flag

[00001111 | 00000110 |

ESC = Processor Extension Escape

[110117TTT [modLLL /m |

80286 Instruction Set

31

Protection Control

LGDT = Load Global Descriptor Table Register

00001111 | 00000001 | mod010w/m |

SGDT = Store Global Descriptor Table Register

00001111 [00000001 [mod 000 r/m [

LIDT = Load Interrupt Descriptor Table Register

[00001111 [00000001 [modo11rm |

SIDT = Store Interrupt Descriptor Table Register

00001111 [00000001 | mod 00 1r/m |

LLDT = Load Local Descriptor Table Register from Register/Memory

[00001111 00000000 | mod010w/m

SLDT = Store Local Descriptor Table Register from Register/Memory

[00001111 | 00000000 | mod 000 r/m |

LTR = Load Task Register from Register/Memory

[00001111 | 00000000 mod 011 r/m

STR = Store Task Register to Register/Memory

[00001111 | 00000000 | mod 00 1r/m |

LMSW = Load Machine Status Word from Register/Memory

00001111 [00000001 | mod 110w/m |

32 80286 Instruction Set

SMSW = Store Machine Status Word

Dooonn [00000001 | mod 100 r/m l

LAR = Load Access Rights from Register/Memory

[00001111 | 00000010 | modregrim |

LSL = Load Segment Limit from Register/Memory

|oooo1111 [00000011 | mod reg r/im |

ARPL = Adjust Requested Privilege Level from Register/Memory

01100011 | mod reg r/m |

VERR = Verify Read Access; Register/Memory

[00001111 | 00000000 | mod 100 r/m |

VERW = Verify Write Access

|oooo1111 | 00000000 [mod 101 w/m |

The effective address (EA) of the memory operand is computed
according to the mod and r/m fields:

If mod = 11, then r/m is treated as a reg field.

If mod = 00, then disp = 0, disp-low and disp-high are absent.

If mod = 01, then disp = disp-low sign-extended to 16 bits,
disp-high is absent.
If mod = 10, then disp = disp-high:disp-low.

If r/m = 000, then EA = (BX) + (SI) + DISP
If r/m = 001, then EA = (BX) + (DI) + DISP
If r/m = 010, then EA = (BP) + (SI) + DISP

If r/m = 011, then EA = (BP) + (DI) + DISP
If r/m = 100, then EA = (SI) + DISP
If r/m = 101, then EA = (DI) + DISP
If r/m = 110, then EA = (BP) + DISP
If r/m = 111, then EA = (BX) + DISP

80286 Instruction Set

33

The disp field follows the second byte of the instruction (before data if
required).

Note: An exception to the above statements occurs when mod =00
and r/m=110, in which case EA = disp-high; disp-low.

Segment Override Prefix

001reg110

The 2-bit and 3-bit reg fields are defined in the following figures.

Reg Segment Reg Segment
Register Register

00 ES 10 SS

01 cs 1 DS

Figure 6. 2-Bit Register Field

16-Bit (w = 1) 8-Bit (w = 0)
000 AX 000 AL
001 CX 001 CL
010 DX 010 DL
011 BX 011 BL
100 SP 100 AH
101 BP 101 CH
1108 110 DH
111Dl 111 BH

Figure 7. 3-Bit Register Field

The physical addresses of all operands addressed by the BP register
are computed using the SS Segment register. The physical
addresses of the destination operands of the string primitive
operations (those addressed by the DI register) are computed using
the ES segment, which may not be overridden.

34 80286 Instruction Set

80287 Math Coprocessor Instruction Set

The following is an instruction-set summary for the 80287 Math
Coprocessor.

The following figure shows abbreviations used in the summary.

Field Description Bit Information
escape 80286 Extension Escape Bit Pattern = 11011
MF Memory Format 00 = 32-Bit Real
01 = 32-Bit Integer
10 = 64-Bit Real
11 = 16-Bit Integer
ST(0) Current Stack Top
ST(i) ith Register Below the Stack
Top
d Destination 0 = Destination is ST(0)
1 = Destination is ST(i)
P Pop 0 = No pop
1 = Pop ST(0)
R Reverse* 0 = Destination (op) source

1 = Source (op) destination

* When d=1, reverse the sense of R.

Figure 8. 80287 Encoding Field Summary
Data Transfer

FLD = Load

Integer/Real Memory to ST(0)

rescape MF 1 mod 000 r/m

80287 Math Coprocessor Instruction Set

35

Long Integer Memory to ST(0)

I escape 111 | mod 101 r/m |

Temporary Real Memory to ST(0)

I escape 011 | mod 101 r/m |
BCD Memory to ST(0)

|escape111 |mod100r/m |
ST(i) to ST(0)

| escape 001 | 11000sT() |
FST = Store

ST(0) to Integer/Real Memory

I escape MF 1 | mod010r/m l
ST(0) to ST(i)
| escape 101 [11010s70) |

FSTP = Store and Pop

ST(0) to Integer/Real Memory
| escape MF 1 | modo11rm |

ST(0) to Long Integer Memory

|escape111 |mod111r/m |

ST(0) to Temporary Real Memory

| escape 011 | mod111r/m |

36 80287 Math Coprocessor Instruction Set

ST(0) to BCD Memory

Iescape111 | mod 110 r/m I
ST(0) to ST(j)
| escape 101 [110115706) |

FXCH = Exchange ST(I) and ST(0)

| escape 001 | 110015T70) |

Comparison

FCOM = Compare

Integer/Real Memory to ST(0)
[escape MF 0 | mod 010 r/m |

ST(i) to ST(0)
| escape0oo [11010sT0) |

FCOMP = Compare and Pop

Integer/Real Memory to ST(0)

I escape MF 0 I mod011r/m I
ST(i) to ST(0)
| escape 000 [11011s1) |

FCOMPP = Compare ST(1) to ST(0) and Pop Twice

Iescape110 I11011001 |

80287 Math Coprocessor Instruction Set

37

FTST = Test ST(0)

| escape 001 | 11100100 |

FXAM = Examine ST(0)

| escape 001 11100101 |

Constants

FLDZ = Load + 0.0 into ST(0)

Iescape001 11101110 I

FLD1 = Load + 1.0 into ST(0)

| escape 001 11101000 |

FLDPI = Load = Into ST(0)

| escape 001 11101011 |

FLDL2T = Load log, 10 into ST(0)

| escape 001 11101001 [

FLDL2E = Load log, e into ST(0)

escape 00 1 11101010 |

FLDLG2 = Load log,, 2 into ST(0)

| escape 001 11101100 |

FLDLN2 = Load log, 2 into ST(0)

| escape 001 11101101 |

38 80287 Math Coprocessor Instruction Set

Arithmetic

FADD = Addition

Integer/Real Memory with ST(0)

I escape MFO0 mod 000 r/m

ST(i) and ST(0)

| escape dPo 11000ST(j)

FSUB = Subtraction

Integer/Real Memory with ST(0)

I escape MF 0 mod 10 R r/m]
ST(i) and ST(0)
I escape dP 0 1110R r/m]

FMUL = Multiplication

Integer/Real Memory with ST(0)

rescape MF 0 mod001r/m I
ST(i) and ST(0)
l escape dP 0 11001 r/m I

FDIV = Division

Integer/Real Memory with ST(0)

| escape MF 0 mod 11Rrim |
ST(i) and ST(0)
[escapedPO 1111Rr/m I

80287 Math Coprocessor Instruction Set

39

FSQRT = Square Root of ST(0)

| escape 001 11111010 |

FSCALE = Scale ST(0) by ST(1)

| escape 001 11111101 |

FPREM = Partial Remainder of ST(0) < ST(1)

| escape 001 11111000 |

FRNDINT = Round ST(0) to Integer

| escape 001 11111100 |

FXTRACT = Extract Components of ST(0)

| escape 001 11110100 |

FABS = Absolute Value of ST(0)

| escape 001 11100001 |

FCHS = Change Sign of ST(0)

| escape 001 11100000 |

Transcendental

FPTAN = Partial Tangent of ST(0)

[escape 001 11110010 |

FPATAN = Partial Arctangent of ST(1) <= ST(0)

| escape 001 11110011 |

40 80287 Math Coprocessor Instruction Set

F2XM1 = 2ST(0) -1

| escape 001 11110000 |

FYL2X = ST(1) x Log, [ST(0)]

[escape 001 11110001 |

FYL2XP1 = ST(1) x Log, [ST(0) + 1]

| escape 001 11111001 |

Processor Control

FINIT = Initialize NPX

| escape 011 11100011 |

FSETPM = Enter Protected Mode

| escape0 11 11100100 |

FSTSW AX = Store Control Word

liscape111 11100000]

FLDCW = Load Control Word

bscape 001 mod 10 1r/m]

FSTCW = Store Control Word

[escape 001 mod111r/m I

FSTSW = Store Status Word

| escape 101 mod111r/m l

80287 Math Coprocessor Instruction Set

41

FCLEX = Clear Exceptions

|e§capeo11 11100010 |

FSTENV = Store Environment

‘ escape 00 1 mod 110 r/m |

FLDENV = Load Environment

I escape 001 mod 100 r/m I

FSAVE = Save State

| escape 101 mod 110r/m |

FRSTOR = Restore State

I escape 101 mod100r/m |

FINCSTP = Increment Stack Pointer

| escape 001 11110111 |

FDECSTP = Decrement Stack Pointer

| escape 001 11110110 |

FFREE = Free ST(I)

| escape 101 11000 ST(i) |

FNOP = No Operation

| escape 001 11010000 |

42 80287 Math Coprocessor Instruction Set

Introduction to the 80386 Instruction Set

The 80386 instruction set is an extended version of the 8086 and
80286 instruction sets. The instruction sets have been extended in
two ways:

* The instructions have extensions that allow operations on 32-bit
operands, registers, and memory.

* A 32-bit addressing mode allows flexible selection of registers for
base and index as well as index scaling capabilities (x2, x4, x8)
for computing a 32-bit effective address. The 32-bit effective
address yields a 4GB address range.

Note: The effective address size must be less than 64KB in the
real-address or virtual-address modes to avoid an
exception.

Code and Data Segment Descriptors

Although the 80386 supports all 80286 Code and Data segment
descriptors, there are some differences in the format. The 80286
segment descriptors contain a 24-bit base address and a 16-bit limit
field, while the 80386 segment descriptors have a 32-bit base
address, a 20-bit limit field, a default bit, and a granularity bit.

31 24123 16115 08 [07 0;|
Segment Base (SB) Bits 15-0 Segment Limit (SL) Bits 15-0 0
SB Bits 31-24 G| D| 0| 0| SL 19-16| Access Rights Byte| SB Bits 23-16 4

Figure 9. 80386 Code and Data Segment Descriptor Format

Note: Bits 31 through 16 shown at offset 4 are set to 0 for all 80286
segment descriptors.

The default (D) bit of the code segment register is used to determine
whether the instruction is carried out as a 16-bit or 32-bit instruction.
Code segment descriptors are not used in either the real-address

mode or the virtual-8086 mode. When the system microprocessor is
operating in either of these modes, a D-bit value of 0 is assumed and

80386 Instruction Set Introduction 43

~0 0 - =0

operations default to a 16-bit length compatible with 8086 and 80286
programs.

The granularity (G) bitis used to determine the granularity of the
segment length (1 = page granular, 0 = byte granular). If the value
of the 20 segment-iimit bits is defined as N, a G-bit vaiue of 1 defines
the segment size as follows:

Segment size = (N + 1) x 4KB

4KB represents the size of a page.

Prefixes

Two prefixes have been added to the instruction set. The Operand
Size prefix overrides the default selection of the operand size; the
Effective Address Size prefix overrides the effective address size.
The presence of either prefix toggles the default setting to its
opposite condition. For example:

¢ |f the operand size defaults to 32-bit data operations, the
presence of the Operand Size prefix sets it for 16-bit data
operations.

¢ If the effective address size is 16-bits, the presence of the
Effective Address Size prefix toggles the instruction to use 32-bit
effective address computations.

The prefixes are available in all 80386 modes, including the
real-address mode and the virtual-8086 mode. Since the default of
these modes is always 16 bits, the prefixes are used to specify 32-bit
operations. If needed, either or both of the prefixes may precede any
opcode bytes and affect only the instruction they precede.

44 80386 Instruction Set Introduction

Instruction Format

The instructions are presented in this format:

Opcode Mode Specifier Address

Displacement

Immediate Data

Term Description

8, 16, or 32 bits.

16, or 32 bits.

bits.

size of the instruction.

Opcode The opcode may be one or two bytes in length. Within
each byte, smaller encoding fields may be defined.

Mode Specifier Consists of the “mod r/m"” byte and the
“scale-index-base” (s-i-b) byte.

The mod r/m byte specifies the address mode to be
used. Format: mod T T T r/m

The “s-i-b” byte is optional and can be used only in
32-bit address modes. It follows the mod r/m byte to
fully specify the manner in which the effective address
is computed. Format: ss index base

Address Displacement Follows the “mod r/m” byte or “s-i-b” byte. It may be

Immediate Data If specified, follows any displacement bytes and
becomes the last field of the instruction. It may be 8,

The term “8-bit data” indicates a fixed data length of 8

The term “8-, 16-, or 32-bit data” indicates a variable
data length. The length is determined by the w field
and the current operand size.

If w = 0, the data is always 8 bits.

If w = 1, the size is determined by the operand

Figure 10. Instruction Format

80386 Instruction Set Introduction

45

The instructions use a variety of fields to indicate register selection,
the addressing mode, and so on. The following figure is a summary
of the fields.

Field Name Description Bit Information
w Specifies if data is byte or 1

full size. (Full size is either

16 or 32 bits.)
d Specifies the direction of 1

data operation.

s Specifies if an immediate 1
data field must be
sign-extended.

reg General address specifier. 3
mod r/m Address mode specifier 2 for mod; 3 for r/m
(effective address can be a

general register).

ss Scale factor for scaled 2
index address mode.

index General register to be used 3
as an index register.

base General register tobe used 3
as base register.

sreg2 Segment register specifier 2
for CS, SS, DS, and ES.

sreg3 Segment register specifier 3
for CS, SS, DS, ES, FS, and
GS.

tttn For conditional instructions; 4

specifies a condition
asserted or a condition
negated.

Figure 11. 80386 Instruction Set Encoding Field Summary
Encoding

This section defines the encoding of the fields used in the instruction
sets.

46 80386 Instruction Set Introduction

Address Mode

The first addressing byte is the “mod r/m” byte. The effective
address (EA) of the memory operand is computed according to the
mod and r/m fields. The mod r/m byte can be interpreted as either a
16-bit or 32-bit addressing mode specifier. Interpretation of the byte
depends on the address components used to calculate the EA. The
following figure defines the encoding of 16-bit and 32-bit addressing
modes with the mod r/m byte.

mod r/m 16-Bit Mode 32-Bit Mode (No s-i-b byte)

00 000 DS:[BX + Sl] DS:[EAX]

00 001 DS:[BX + DI] DS:[ECX]

00 010 SS:[BP + Sl] DS:[EDX]

00 011 SS:[BP + DI] DS:[EBX]

00 100 DS:[Sl] s-i-b present (see Figure 16 on
page 50)

00 101 DS:[DI1] DS:d32

00 110 d16 DS:[ESI]

00111 DS:[BX] DS:[EDI]

01 000 DS:[BX + Sl + d8] DS:[EAX + d8]

01 001 DS:[BX + DI + d8] DS:[ECX + d8]

01010 SS:[BP + Sl + d8] DS:[EDX + d8]

01011 SS:[BP + DI + d8] DS:[EBX + d8]

01100 DS:[SI + d8] s-i-b present (see Figure 16 on
page 50)

01 101 DS:[DI + d8] SS:[EBP + d8]

01110 SS:[BP + d8] DS:[ESI + d8]

01111 DS:[BX + d8] DS:[EDI + d8]

10 000 DS:[BX + Sl + d16] DS:[EAX + d32]

10 001 DS:[BX + DI + d16] DS:[ECX + d32]

10010 SS:[BP + Sl + d16] SS:[EDX + d32]

10 011 SS:[BP + DI + d16] DS:[EBX + d32]

10 100 DS:[SI + d16] s-i-b present (see Figure 16 on
page 50)

10 101 DS:[DI + d16] SS:[EBP + d32]

10 110 SS:[BP + d16] DS:[ESI + d32]

10 111 DS:[BX + d16] DS:[EDI + d32]

Figure 12. Effective Address (16-Bit and 32-Bit Address Modes)

The displacement follows the second byte of the instruction (before
data, if required).

The scale-index-base (s-i-b) byte can be specified as a second byte of
addressing information. The s-i-b byte is specified when using a

80386 Instruction Set Introduction 47

32-bit addressing mode and the mod r/m byte has the following
values:

e r/m = 100
¢ mod = 00, 01, or 10.

When the s-i-b byte is present, the 32-bit effective address is a
function of the mod, ss, index, and base fields. The following figures
show the scale factor, Index register selected, and base register
selected when the s-i-b byte is present.

ss Scale Factor
00 1
01 2
10 4
11 8

Figure 13. Scale Factor (s-i-b Byte Present)

Index Index Register

000 EAX

001 ECX

010 EDX

011 EBX

100 No Index Register The ss field must equal 00 when the index
field is 100; if not, the effective address is
undefined.

101 EBP

110 ESI

111 EDI

" Figure 14. Index Registers (s-i-b Byte Present)

48 80386 Instruction Set Introduction

000
001
010
011
100
101

110
1

base Base Register

EAX

ECX

EDX

EBX

ESP

EBP If mod = 00, then EBP is not used to form
the EA; immediate 32-bit address
displacement follows the mode specifier
byte.

ESI

EDI

Figure 15. Base Registers (s-i-b Byte Present)

The

scaled-index information is determined by multiplying the

contents of the Index register by the scale factor. The following
example shows the use of the 32-bit addressing mode with scaling
where:

e EAX is the base of ARRAY_A
e ECX is the index of the desired element
e 2 s the scale factor.

; ARRAY_A is an array of words
MOV EAX, offset ARRAY_A

MOV ECX, element_number

MoV BX, [EAX][ECX*2]

80386 Instruction Set Introduction

49

The following figure defines the encoding of the 32-bit addressing
mode when the s-i-b byte is present.

Note: The mod field is from the mod r/m byte. The base field and
scaled-index information are from the s-i-b byte.

Mod Base 32-Bit Address Mode

00 000 DS:[EAX + (scaled index)]

00 001 DS:[ECX + (scaled index)]
00010 DS:[EDX + (scaled index)]
00011 DS:[EBX + (scaled index)]

00 100 SS:[ESP + (scaled index)]

00 101 DS:[d32 + (scaled index)]

00 110 DS:[ESI + (scaled index)]

00 111 DS:[EDI + (scaled index)]

01 000 DS:[EAX + (scaled index) + d8]
01001 DS:[ECX + (scaled index) + d8]
01010 DS:[EDX + (scaled index) + d8]
01011 DS:[EBX + (scaled index) + d8]
01 100 SS:[ESP + (scaled index) + d8]
01 101 SS:[EBP + (scaled index) + d8]
01 110 DS:[ESI + (scaled index) + d8]
01111 DS:[EDI + (scaled index) + d8]
10 000 DS:[EAX + (scaled index) + d32]
10 001 DS:[ECX + (scaled index) + d32]
10 010 DS:[EDX + (scaled index) + d32]
10 011 DS:[EBX + (scaled index) + d32]
10 100 SS:[ESP + (scaled index) + d32]
10 101 SS:[EBP + (scaled index) + d32]
10 110 DS:[ESI + (scaled index) + d32]
10 111 DS:[EDI + (scaled index) + d32]

Figure 16. Effective Address (32-Bit Address Mode — s-i-b Byte Present)
Operand Length (w) Field

For an instruction performing a data operation, the instruction is
executed as either a 32-bit or 16-bit operation. Within the constraints

of the operation size, the w field encodes the operand size as either
one byte or full operation.

50 80386 Instruction Set Introduction

w 16-Bit Data Operation 32-Bit Data Operation

0 8 Bits 8 Bits
1 16 Bits 32 Bits

Figure 17. Operand Length Field Encoding
Segment Register (sreg) Field
The 2-bit segment register field (sreg2) allows one of the four 80286

segment registers to be specified. The 3-bit segment register (sreg3)
allows the 80386 FS and GS segment registers to be specified.

sreg2 sreg3 Segment Register
00 000 ES

01 001 CcS

10 010 SS

1" 011 DS

- 100 FS

- 101 GS

- 10 Reserved

- 11 Reserved

Figure 18. Segment Register Field Encoding
General Register (reg) Field
The General register is specified by the reg field, which may appear

in the primary opcode bytes as the reg field of the mod reg r/m byte,
or as the r/m field of the mod reg r/m byte when mod = 11.

reg 16-Bit 16-Bit 16-Bit 32-Bit 32-Bit 32-Bit
(without w) (w = 0) (w =1) (withoutw) (w =0) (w =1)

000 AX AL AX EAX AL EAX
001 CcX CL CX ECX CL ECX
010 DX DL DX EDX DL EDX
011 BX BL BX EBX BL EBX
100 SP AH SP ESP AH ESP
101 BP CH BP EBP CH EBP
110 Si DH Si ESI DH ESI

i1 DI BH DI EDI BH EDI

Figure 19. General Register Field Encoding

The physical addresses of all operands addressed by the BP register
are computed using the SS Segment register. For string primitive

80386 Instruction Set Introduction 51

operations (those addressed by the DI register), addresses of the
destination operands are computed using the ES segment, which may
not be overridden. '

Operation Direction (d) Field

The operation direction (d) field is used in many two-operand
instructions to indicate which operand is the source and which is the
destination.

d Direction of Operation

0 Register/Memory <-- Register
The “reg” field indicates the source operand; “mod r/m” or “mod ss
index base” indicates the destination operand.

1 Register<-- Register/Memory
The “reg” field indicates the destination operand; “mod r/m” or “mod ss
index base” indicates the source operand.

Figure 20. Operand Direction Field Encoding
Sign-Extend (s) Field

The sign-extend (s) field appears primarily in instructions having
immediate data fields. The s field affects only 8-bit immediate data
being placed in a 16-bit or 32-bit destination.

[] 8-Bit Inmediate Data 16/32-Bit Inmediate Data

No effect on data No effect on data
1 Sign-extend 8-bit data to fill 16-bit or No effect on data
32-bit destination

Figure 21. Sign-Extend Field Encoding
Conditional Test (tttn) Field

For conditional instructions (conditional jumps and set-on condition),
the conditional test (tttn) field is encoded, with n indicating whether to
use the condition (n = 0) or its negation (n = 1), and ttt defining the
condition to test.

52 80386 Instruction Set Introduction

0000
0001
0010
0011

0100
0101
0110
0111

1000
1001
1010
1011

1100
1101
1110
1111

Condition

Overflow

No Overflow

Below/Not Above or Equal
Not Below/Above or Equal

Equal/Zero

Not Equal/Not Zero

Below or Equal/Not Above
Not Below or Equal/Above

Sign

Not Sign
Parity/Parity Even
Not Parity/Parity Odd

Less Than/Not Greater or Equal
Not Less Than/Greater or Equal

Less Than or Equal/Not Greater Than

Not Less or Equal/Greater Than

Mnemonic

o

NO
B/NAE
NB/AE

E/Z

NE/NZ
BE/NA
NBE/A

S

NS
P/PE
NP/PO

L/NGE
NL/GE
LE/NG
NLE/G

Figure 22. Conditional Test Field Encoding

Control, Debug, or Test Register (eee) Field

The following shows the encoding for loading and storing the Control,
Debug, and Test registers (eee).

000
001
010
011
100
101
110
111

eee Code Interpreted as

Control Register

CRO

CR2
CR3

Interpreted as
Debug Register

DRO
DR1
DR2
DR3

DRé6
DR7

Interpreted as
Test Register

TR6
TR7

Figure 23. Control, Debug, and Test Register Field Encoding

80386 Instruction Set Introduction

53

80386 Microprocessor Instruction Set

Data Transfer

MOV = Move

Register to Register/Memory
|1000100w |modregr/m]

Register/Memory to Register
|1000101w |modregr/m l

Immediate to Register/Memory

[1100011w | mod000r/m | 8-, 16-, or 32-bit data

Immediate to Register (Short Form)
[1011wreg | 8-, 16-, or 32-bit data |

Memory to Accumulator (Short Form)
[1010000w | full 16- or 32-bit displacement |

Accumulator to Memory (Short Form)
[1010001w | full 16-or 32-bit displacement |

Register/Memory to Segment Register
|10001110 Imodsregar/m l

Segment Register to Register/Memory
[10001100 | modsregarim |

54 80386 Instruction Set

MOVSX = Move with Sign Extension

Register from Register/Memory
00001111 1011111w mod reg r/m

MOVZX = Move with Zero Extension

Register from Register/Memory
00001111]1011011w mod reg r/m

PUSH = Push

Register/Memory
111111111 |mod110r/m

Register (Short Form)
01010 reg |

Segment Register (ES, CS, SS, or DS) Short Form
[000sreg2110 |

Segment Register (FS or GS)

[00001111 [10sregaooo
Immediate
01101050 | 8-, 16-, or 32-bit data

PUSHA = Push All

01100000 |

80386 Instruction Set 55

POP = Pop

Register/Memory
10001111 | mod 000 r/m

Register (Short Form)
01011 reg |

Segment Register (ES, SS, or DS) Short Form
[000sreg2111 |

Segment Register (FS or GS)
[00001111 | 10sreg3001

POPA = Pop All

01100001 |

XCHG = Exchange

Register/Memory with Register
|1000011w Imodregr/m

Register with Accumulator (Short Form)
[10010 reg |

IN = Input From:

Fixed Port
[1110010w | port number

Variable Port
[1110110w |

56 80386 Instruction Set

OUT = Output To:

Fixed Port

[1110011w [port number

Variable Port
[1110111w |

LEA = Load EA to Register

[10001101 | mod reg r/m

Segment Control

LDS = Load Pointer to DS

IL000101 1modregr/m

LES = Load Pointer to ES

|11000100 |modregr/m

LFS = Load Pointer to FS

[00001111 | 10110100

[mod reg r/m

|

LGS = Load Pointer to GS

00001111 10110101 mod reg r/m
LSS = Load Pointer to SS
|oooo1111 10110010 mod reg r/m

80386 Instruction Set

57

Flag Controi

CLC = Clear Carry Flag

[11111000 |

CLD = Clear Direction Flag

[11111100 I

CLI = Clear Interrupt Enable Flag

[11111010 l

CLTS = Clear Task Switched Flag

[00001111 [00000110

CMC = Complement Carry Flag

11110101

LAHF = Load AH Into Flag

[10011111 |

POPF = Pop Flags

10011101

PUSHF = Push Flags

10011100 |

58 80386 Instruction Set

SAHF = Store AH Into Flags

[10011110 |

STC = Set Carry Flag

[11111001]

STD = Set Direction Flag

[11111101 |

STl = Set Interrupt Enable Flag

L11111o11 |

Arithmetic

ADD = Add

Register to Register
|000000dw |modregrlm J

Register to Memory
|0000000w Jmodregrlm l

Memory to Register

MOooow Jmodregr/m —l

Immediate to Register/Memory
[100000sw | mod 000 r/m [8-, 16-, or 32-bit data

Immediate to Accumulator (Short Form)
loooootow | 8-, 16-, or 32-bit data

80386 Instruction Set 59

ADC = Add with Carry

Register to Register
|000100dw |modregr/m l

Register to Memory
|0001000w |modregr/m l

Memory to Register
|0001001w |modregr/m I

Immediate to Register/Memory

[100000sw | mod010r/m | 8-, 16-, or 32-bit data

Immediate to Accumulator (Short Form)
I 0001010w | 8-, 16-, or 32-bit data

INC = Increment

Register/Memory
[1111111w [mod0o0rm

Register (Short Form)
| 01000 reg l

60 80386 Instruction Set

SUB = Subtract

Register from Register
[001010dw | mod reg r/m |

Register from Memory
r0010100w |modregr/m J

Memory from Register
[0010101w [modregr/m |

Immediate from Register/Memory
[100000sw [mod101mwm | 8-, 16-, or 32-bit data |

Immediate from Accumulator (Short Form)
[0010110w] 8-, 16-, or 32-bit data

SBB = Subtract with Borrow

Register from Register
[000110dw | mod reg /m |

Register from Memory
[0001100w Imodregr/m J

Memory from Register
[0001101w | mod reg r/m |

80386 Instruction Set 61

Immediate from Register/Memory

[100000sw [modo11vm | &, 16-, or 32-bit data

Immediate from Accumulator (Short Form)
[ooo1110w | 8-, 16-, or 32-bit data

DEC = Decrement

Register/Memory
[1111111w | mod001r/m J

Register (Short Form)
01001 reg |

CMP = Compare

Register with Register
[001110dw | mod reg r/m |

Memory with Register
[0011100w | modregr/m |

Register with Memory
[0011101w |modregr/m |

Immediate with Register/Memory

| 100000sw | mod 1110/m | 8-, 16-, or 32-bit data

Immediate with Accumulator (Short Form)
[0011110w | 8-, 16-, or 32-bit data

62 80386 Instruction Set

NEG = Change Sign

[1111011w | mod011r/m

AAA = ASCII Adjust for Add

00110111 |

AAS = ASCII Adjust for Subtract

00111111 |

DAA = Decimal Adjust for Add

00100111 |

DAS = Decimal Adjust for Subtract

00101111 [

MUL = Multiply (Unsigned)

Accumulator with Register/Memory
1111011w |mod100r/m |

IMUL = Integer Multiply (Signed)

Accumulator with Register/Memory
[1111011w [mod101vm |

Register with Register/Memory
00001111 [10101111 | modregr/m

Register/Memory with Inmediate to Register

01101051 | mod reg rm | 8-, 16-, or 32-bit data

80386 Instruction Set

DIV = Divide (Unsigned)

Accumulator by Register/Memory
1111011w |mod110vm |

IDIV = integer Divide (Signed)

Accumulator by Register/Memory
[1111011w [mod111om |

AAD = ASCII Adjust for Divide

|11o1o1o1 |oooo1o1o

AAM = ASCII Adjust for Mulitiply

[11010100 [00001010 |

CBW = Convert Byte to Word

[10011000 |

CWD = Convert Word to Doubleword

[10011001 |

Logic

Shift/Rotate Instructions
Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)

Register/Memory by 1
[1101000w [modTTTOim |

Register/Memory by CL
[1101001w [modTTTIim |

64 80386 Instruction Set

Register/Memory by Immediate Count

1100000w | mod TT7r/m ls—bitdata

Shift/Rotate Instructions
Through Carry (RCL and RCR)

Register/Memory by 1

[1101000w [modTTTrm |
Register/Memory by CL
[1101001w |modTTTem |

Register/Memory by Immediate Count

[1100000w | modTTTrm | bitdata

TTT Instruction

000 ROL

001 ROR

010 RCL

011 RCR

100 SHL/SAL

101 SHR

111 SAR

SHLD = Shift Left Double

Register/Memory by Immediate

[00001111 | 10100100 | mod reg rim | 8-bit data
Register/Memory by CL
00001111 [10100101 | mod reg r/m |

80386 Instruction Set

SHRD = Shift Right Double

Register/Memory by Immediate

[00001111 [10101100 | mod reg r/m | 8-bit data
Register/Memory by CL

[00001111 10101101]modregr/m l

AND = And

Register to Register

[001000dw | mod reg r/m

Register to Memory

[0010000w [modregvm

Memory to Register

[0010001w | modreg r/m

Immediate to Register/Memory

[100000sw | mod100wm

| 8-, 16-, or 32-bit data

Immediate to Accumulator (Short Form)

[o010010w | 8-, 16-, or 32-bit data

66 80386 Instruction Set

TEST = AND Function to Flags; No Result

Register/Memory and Register
[1000010w [mod reg r/m |

Immediate Data and Register/Memory

I 1111011w lmodOOOr/m l 8-, 16-, or 32-bit data

Immediate Data and Accumulator (Short Form)

| 1010100w | 8-, 16-, or 32-bit data
OR = Or

Register to Register
|000010dw Imodregr/m |

Register to Memory
[0000100w [modreg vm |

Memory to Register
[0000101w [modregim |

Immediate to Register/Memory

| 100000sw | mod001r/m | 8-, 16-, or 32-bit data

Immediate to Accumulator (Short Form)
| 0000110w | 8-, 16-, or 32-bit data

80386 Instruction Set

67

XOR = Exclusive OR

Register to Register
|001100dw Imodregr/m |

Register to Memory
|0011000w |modregrlm I

Memory to Register
[0011001w | mod reg r/m |

Immediate to Register/Memory

[100000sw | mod 110w/m | 8-, 16-, or 32-bit data

Immediate to Accumulator (Short Form)
[o011010w | 8-, 16-, or 32-bit data

NOT = Invert Register/Memory

[1111011w [modo10wm

String Manipulation

CMPS = Compare Byte Word

[1010011w |

INS = input Byte/Word from DX Port

[o110110w |

68 80386 Instruction Set

LODS = Load Byte/Word to AL/AX/EAX

[1010110w |

MOVS = Move Byte Word

|1010010w |

OUTS = Output Byte/Word to DX Port

[o110111w |

SCAS = Scan Byte Word

[1010111w |

STOS = Store Byte/Word from AL/AX/EX

|1o1o1o1w]

XLAT = Translate String

[11010111 |

Repeated String Manipulation
Repeated by Count in CX or ECX

REPE CMPS = Compare String (Find Non-Match)

11110011 1010011w I

80386 Instruction Set 69

REPNE CMPS = Compare String (Find Match)

[11110010 [1010011w |

REP INS = Input String

r1111oo1o Jo110110w |

REP LODS = Load String

[11110010 [1010110w |

REP MOVS = Move String

|1111oo1o Lowoww |

REP OUTS = Output String

[11110010 [o110111w |

REPE SCAS = Scan String (Find Non-AL/AX/EAX)

|1111oo11 |1o1o111w j

REPNE SCAS = Scan String (Find AL/AX/EAX)

11110010 [1010111w |

REP STOS = Store String

|1111oo1o |1o1o1o1w J

70 80386 Instruction Set

Bit Manipulation

BSF = Scan Bit Forward

[00001111 [10111100 | mod reg r/m

BSR = Scan Bit Reverse

|00001111 [10111101 | mod reg r/m |
BT = Test Bit

Register/Memory, Immediate

roooo1111 |1o111o1o [mod100r/m

I 8-bit data

Register/Memory, Register

(00001111 [10100011 | mod reg r/m

BTC = Test Bit and Complement

Register/Memory, Immediate

00001111 [10111010 | mod 111r/m

| 8-bit data

Register/Memory, Register

|oooo1111 mnwn | mod reg r/m

BTR = Test Bit and Reset

Register/Memory, Immediate

00001111 10111010 imod110r/m

| 8-bit data

Register/Memory, Register

00001111 [10110011 | mod reg r/m

80386 Instruction Set

(4

BTS = Test Bit and Set

Register/Memory, Inmediate

[00001111 10111010 | mod 101 r/m

| 8-bit data

Register/Memory, Register

00001111 | 10101011 | mod reg r/m

Control Transfer

CALL = Call

Direct within Segment

[11101000 | tull 16- or 32-bit displacement

Register/Memory Indirect within Segment
[11111111 | mod010r/m

Direct Intersegment

| 10011010 I offset, selector

Indirect Intersegment
[11111111 | mod011w/m J

JMP = Unconditional Jump

Short
[11101011 | 8-bit disp.

Direct within Segment

l 11101001 l full 16- or 32-bit displacement

72 80386 Instruction Set

Register/Memory Indirect within Segment
[11111111 | mod 100 m

Direct Intersegment
[11101010 | offset, selector

Indirect Intersegment
[11111111 | mod 101r/m

RET = Return from Call

Within Segment
[11000011 |

Within Segment Adding Immediate to SP
I 11000010 l 16-bit displacement —l

Intersegment
11001011 |

Intersegment Adding Immediate to SP
[11001010 | 16-bit displacement |

Conditional Jumps

JO = Jump on Overflow

8-Bit Displacement
01110000 | 8-bit disp. |

Full Displacement
[00001111 | 10000000 | full 16- or 32-bit displacement

80386 Instruction Set 73

JNO = Jump on Not Overflow

8-Bit Displacement
01110001 | 8-bit disp. |

Full Displacement

00001111 | 10000001 | full 16- or 32-bit displacement

JB/JNAE = Jump on Below/Not Above or Equal

8-Bit Displacement
01110010 | 8-bit disp. |

Full Displacement

[00001111 | 10000010 | full 16- or 32-bit displacement

JNB/JAE = Jump on Not Below/Above or Equal

8-Bit Displacement
01110011 | 8-bit disp. |

Full Displacement

00001111 | 10000011 | full 16- or 32-bit displacement

JENZ = Jump on Equal/Zero

8-Bit Displacement
lo1110100 | 8-bit disp.]

Full Displacement

[00001111 | 10000100 | full 16- or 32-bit displacement

74 80386 Instruction Set

JNE/JNZ = Jump on Not Equal/Not Zero

8-Bit Displacement

01110101 | 8-bit gisp.
Full Displacement
[00001111 [10000101 full 16- or 32-bit displacement |

JBE/JNA = Jump on Below or Equal/Not Above

8-Bit Displacement

01110110 | 8-bit disp.
Full Displacement
[00001111 | 10000110

full 16- or 32-bit displacement

JNBE/JA = Jump on Not Below or Equal/Above

8-Bit Displacement

(01110111 | 8-bit disp.
Full Displacement
|00001111 |10000111

full 16- or 32-bit displacement

JS$ = Jump on Sign

8-Bit Displacement

|o1111ooo

| 8-bit disp.

Full Displacement

|oooo1111 | 10001000

full 16- or 32-bit displacement

|

80386 Instruction Set

75

JNS = Jump on Not Sign

8-Bit Displacement
[01111001 | 8-bit disp. |

Full Displacement

00001111 | 10001001 | full 16- or 32-bit displacement

JP/JPE = Jump on Parity/Parity Even

8-Bit Displacement
|01111010 |8-bitdisp. J

Full Displacement

[00001111 | 10001010 ‘ full 16- or 32-bit displacement

JNP/JPO = Jump on Not Parity/Parity Odd

8-Bit Displacement
01111011 | &-bit disp. |

Full Displacement

[00001111 [10001011 | tull 16- or 32-bit displacement

JL/UNGE = Jump on Less/Not Greater or Equal

8-Bit Displacément
[01111100 | 8-bit disp. l

Full Displacement

00001111 [10001100 | full 16- or 32-bit displacement

76 80386 Instruction Set

JNL/JGE = Jump on Not Less/Greater or Equal

8-Bit Displacement
01111101 | 8-bit disp. |

Full Displacement

[00001111 | 10001101 | full 16- or 32-bit displacement

JLE/UNG = Jump on Less or Equal/Not Greater

8-Bit Displacement
[01111110 | 8-bit disp. |

Full Displacement

00001111 | 10001110 | full 16- or 32-bit displacement

JNLE/JG = Jump on Not Less or Equal/Greater

8-Bit Displacement
01111111 | 8-bit disp. |

Full Displacement

| 00001111 | 10001111 l full 16- or 32-bit displacement

JCXZ = Jump on CX Zero

11100011 8-bit disp.

JECXZ = Jump on ECX Zero

11100011 | 8-bit disp. |

Note: The operand size prefix differentiates JCXZ from JECXZ.

80386 Instruction Set

77

LOOP = Loop CX Times

[11100010 | 8-bit disp. [

LOOPZ/LOOPE = Locp with Zero/Equal

[11100001 | &-bit disp.]

LOOPNZ/LOOPNE = Loop while Not Zero

[11100000 | 8-bit disp. |

Conditional Byte Set

SETO = Set Byte on Overflow

To Register/Memory
00001111 110010000 mod 000 r/m

SETNO = Set Byte on Not Overflow

To Register/Memory
00001111 | 10010001 | mod000w/m

SETB/SETNAE = Set Byte on Below/Not Above or Equal

To Register/Memory
00001111 |10010010 |mod000r/m

SETNB = Set Byte on Not Below/Above or Equal

To Register/Memory
00001111 |10010011 mod 000 r/m

SETE/SETZ = Set Byte on Equal/Zero

To Register/Memory
00001111 '10010100 mod 000 r/m

78 80386 Instruction Set

SETNE/SETNZ = Set Byte on Not Equal/Not Zero

To Register/Memory
00001111 | 10010101 | mod000r/m

SETBE/SETNA = Set Byte on Below or Equal/Not Above

To Register/Memory
00001111 |1oo1o11o JmodOOOr/m

SETNBE/SETA = Set Byte on Not Below or Equal/Above

To Register/Memory
00001111 |10010111 lmodOOOr/m

SETS = Set Byte on Sign

To Register/Memory
00001111 |10011000 mod 000 r/m

SETNS = Set Byte on Not Sign

To Register/Memory
00001111 [10011001 | mod 000 r/m

SETP/SETPE = Set Byte on Parity/Parity Even

To Register/Memory
00001111 | 10011010 | modooorm |

SETNP/SETPO = Set Byte on Not Parity/Parity Odd

To Register/Memory
[00001111 | 10011011 | modo00rm |

SETL/SETNGE = Set Byte on Less/Not Greater or Equal

To Register/Memory
00001111 10011100 | mod 000 r/m

80386 Instruction Set

79

SETNL/SETGE = Set Byte on Not Less/Greater or Equal

To Register/Memory
00001111 lo1111101 | mod 000 r/m

SETLE/SETNG = Set Byte on Less or Equal/Not Greater

To Register/Memory
00001111 [10011110 | mod 000 r/m

SETNLE/SETG = Set Byte on Not Less or Equal/Greater

To Register/Memory
[00001111 [10011111 | mod 000 r/m |

ENTER = Enter Procedure

[11001000 | 16-bit displacement | 8-bit level

ll

LEAVE = Leave Procedure

[11001001 |

Interrupt Instructions

INT = Interrupt

Type Specified
[11001101 [type

Type 3
[11001100 |

INTO = Interrupt 4 if Overflow Flag Set

[11001110 |

80 80386 Instruction Set

BOUND = Interrupt 5 If Detect Value Out of Range

01100010 | mod reg r/m

IRET = Interrupt Return

|11oo1111]

Processor Control

HLT = Halt

|L111o1oo

MOV = Move to and from Control/Debug/Test Registers

CRO/CR2/CR3 from Register
00001111 [00100010 | 11eee reg |

Register from CRO-3
[00001111 | 00100000 | 11eee reg |

DRO0-3, DR6-7 from Register
[00001111 |00100011 | 11eee reg |

Register from DR0-3, DR6-7
(00001111 [00100001 | 11eeereg l

TR6-7 from Register

00001111 |oo100110 | 11eee reg |
Register from TR6-7
(00001111 |oo100100 | 11eee reg |

80386 Instruction Set

81

NOP = No Operation

[10010000 |

WAIT = Walt until BUSY Pin le Negated

|1oo11o11 |

Processor Extension

ESC = Processor Extension Escape

11011TTT modLLL /m

Note: TTT and LLL bits are opcode information for the coprocessor.

Prefix Bytes

Address Size Prefix

01100111 |

Operand Size Prefix

01100110 |

LOCK = Bus Lock Prefix

[11110000 |

Note: The use of LOCK is restricted to an exchange with memory, or
bit test and reset type of instruction.

Segment Override Prefix

CS:
00101110

82 80386 Instruction Set

DS:
loo111110 |

ES:
00100110 |

FS:
01100100 |

GS:
01100101 |

SS:
[00110110 |

Protection Control

ARPL = Adjust Requested Privilege Level from Register/Memory

101100011 |modregr/m '

LAR = Load Access Rights from Register/Memory

[00001111 | 00000010 | mod reg m |

LGDT = Load Global Descriptor Table Register

[00001111 | 00000001]modo10r/m |

LIDT = Load Interrupt Descriptor Table Register

{00001111 | 00000001 | mod011r/m |

80386 Instruction Set

83

LLDT = Load Local Descriptor Table Register to Register/Memory

00001111 | 00000000 | mod 010 v/m |

LMSW = Load Machine Status Word from Register/Memory

[00001111 | 00000001 | mod 110 r/m |

LSL = Load Segment Limit from Register/Memory

[00001111 [00000011 | mod reg r/m |

LTR = Load Task Register from Register/Memory

[00001111 [00000000 | mod 00 1r/m |

SGDT = Store Global Descriptor Table Register

[00001111 [00000001 | mod000wm |

SIDT = Store Interrupt Descriptor Table Register

[00001111 [00000001 | mod001r/m |

SLDT = Store Local Descriptor Table Register to Register/Memory

[oooo1111 | 00000000 | mod000w/m |

SMSW = Store Machine Status Word

[00001111 | 00000001 [mod100r/m |

STR = Store Task Register to Register/Memory

00001111 | 00000000 | mod001r/m |

84 80386 Instruction Set

VERR

Verify Read Access; Register/Memory

[00001111 | 00000000 | mod 100 /m [
VERW = Verify Write Access
[00001111 | 00000000 [mod1o1r/m J

80386 Instruction Set 85

Introduction to the 80387 Instruction Set

The 80387 instructions use many of the same fields defined earlier in
this section for the 80386 instructions. Additional fields used by the
80387 instructions are defined in the foiiowing figure.

Fleld Description Bit Information
escape 80386 Extension Escape Bit Pattern = 11011
MF Memory Format 00 = 32-bit Real
01 = 32-bit integer
10 = 64-bit Real
11 = 16-bit integer
ST(0) Current Stack Top
ST(i) ith register below the stack
top
d Destination 0 = Destination is ST(0)
1 = Destination is ST(i)
P Pop 0 = No pop
1 = Pop ST(0)
R Reverse* 0 = Destination (op) source

1 = Source (op) destination

*When d = 1, reverse the sense of R.

Figure 24. 80387 Encoding Field Summary

Within the 80387 Instruction Set:

¢ Temporary (Extended) Real is 80-bit Real.
* Long Integer is a 64-bit integer.

80387 Usage of the Scale-Index-Base Byte

The “mod r/m” byte of an 80387 instruction can be followed by a
scale-index-base (s-i-b) byte having the same address mode
definition as in the 80386 instruction. The mod field in the 80387
instruction is never equal to 11.

86 80387 Instruction Set Introduction

Instruction and Data Pointers

The parallel operation of the 80386 and 80387 may allow errors
detected by the 80387 to be reported after the 80386 has executed the
ESC instruction that caused the error. The 80386/80387 provides two
pointer registers to identify the failing numeric instruction. The
pointer registers supply the address of the failing numeric instruction
and the address of its numeric memory operand when applicable.

Although the pointer registers are located in the 80386, they appear to
be located in the 80387 because they are accessed by the ESC
instructions FLDENV, FSTENV, FSAVE, and FRSTOR. Whenever the
80386 decodes a new ESC instruction, it saves the address of the
instruction along with any prefix bytes that may be present, the
address of the operand (if present), and the opcode.

The instruction and data pointers appear in one of four available
formats:

16-bit Real Mode/Virtual 8086 Mode
32-bit Real Mode

16-bit Protected Mode

32-bit Protected Mode

The Real Mode formats are used whenever the 80386 is in the Real
Mode or Virtual 8086 Mode. The Protected Mode formats are used
when the 80386 is in the Protected Mode. The Operand Size Prefix
can also be used with the 80387 instructions. The operand size of the
80387 instruction determines whether the 16-bit or 32-bit format is
used.

Note: FSAVE and FRSTOR have an additional eight fields (10 bytes
per field) that contain the current contents of ST(0) through
ST(7). These fields follow the instruction and data pointer
image shown in the following figures.

The following figures show the instruction and data pointer image
format used in the various address modes. The ESC instructions
FLDENV, FSTENV, FSAVE, and FRSTOR are used to transfer these
values between the 80386/80387 registers and memory.

80387 Instruction Set Introduction 87

Bits

l 15

8l7 0

Control Word
Status Word
Tag Word
Instruction Pointer (IP) Bits 15-0
IP Bits 19-16 | 0 | Opcode Bits 10-0
Operand Pointer (OP) Bits 15-0
OPBits1916 | 0/ 0 0 0 0 0 0 0 0 0 0 0

Figure 25. Instruction and Pointer Image (16-Bit Real Address Mode)

Bits

[15

8l7 ol

Control Word

Status Word

Tag Word

Instruction Pointer Offset

CS Selector

Operand Offset

Operand Selector

Figure 26. Instruction and Pointer Image (16-Bit Protected Mode)

Bits
31 24 |23 16 [15 8l7 ol
Reserved Control Word
Reserved Status Word
Reserved Tag Word
Reserved IP Bits 15-0
0000| IP Bits 31-16 lo| opcode Bits 10-0
Reserved | Operand Pointer Bits 15-0
0000|OperandPoin‘terBitss1-16]000000000000

O ®© » ©

O » ® o & M O

O » ® ® & N O

10

14
18

Figure 27. Instruction and Pointer Image (32-Bit Real Address Mode)

88 80387 Instruction Set Introduction

.~ ® OB -0

5 -

00—

-~ ® ® - =Q

5 —

00—

. ® O =0

5 -

00—

Bits

|31 24 |23 16'15

8l7

Reserved Control Word
Reserved Status Word
Reserved Tag Word
Instruction Pointer Offset
Reserved | CS Selector
Data Operand Offset
Reserved | Operand Selector

Figure 28. Instruction and Pointer Image (32-Bit Protected Mode)

New Instructions

O ® » O

14
18

-~ D 0 - -0

5 -

x0oo0o—W

Several new instructions are included in the 80387 instruction set that
are not available to the 80287 or 8087 math coprocessors. The new

instructions are:

FUCOM (Unordered Compare Real)
FUCOMP (Unordered Compare Real and Pop)

FUCOMPP (Unordered Compare Real and Pop Twice)

FPREM1 (IEEE Partial Remainder)

FSINE (Sine)
FCOS (Cosine)
FSINCOS (Sine and Cosine).

80387 Instruction Set Introduction

80387 Math Coprocessor Instruction Set

The following is an instruction set summary for the 80387
coprocessor. In the following, the bit pattern for escape is 11011.

Data Transfer

FLD = Load

Integer/Real Memory to ST(0)
| escape MF 1 mod 000 r/m ‘

Long Integer Memory to ST(0)

l escape 111 mod 101 r/m I

Temporary Real Memory to ST(0)

| escape 011 mod 101 r/m l
BCD Memory to ST(0)

| escape 111 mod 100 r/m I
ST(i) to ST(0)

| escape 001 110008T() |
FST = Store

ST(0) to Integer/Real Memory

I escape MF 1 mod010r/m |
ST(0) to ST(i)
| escape 101 110108T() |

90 80387 Math Coprocessor Instruction Set

FSTP = Store and Pop

ST(0) to Integer/Real Memory

| escape MF 1 mod 011 r/m

ST(0) to Long Integer Memory

I escape 111 mod111r/m

ST(0) to Temporary Real Memory

| escape 011 mod111r/m

ST(0) to BCD Memory

rescape 111 mod 110r/m
ST(0) to ST(i)
| escape 101 11011ST()

FXCH = Exchange ST(I) and ST(0)

| escape 001 11001ST(j)

Comparison

FCOM = Compare

Integer/Real Memory to ST(0)

| escape MF 0 mod010r/m |

ST(i) to ST(0)

| escape 000 11010ST()

80387 Math Coprocessor Instruction Set

91

FCOMP = Compare and Pop

Integer/Real Memory to ST(0)

I escape MF 0 mod011r/m I
ST(i) to ST(0)
| escape 000 110118T() |

FCOMPP = Compare ST(1) to ST(0) and Pop Twice

| escape 110 11011001 |

FUCOM = Unordered Compare Real

| escape 101 111008T() |

FUCOMP = Unordered Compare Real and Pop

| escape 101 111018T(i) |

FUCOMPP = Unordered Compare Real and Pop Twice

| escape 010 11101001 |

FTST = Test ST(0)

| escape 001 11100100 |

FXAM = Examine ST(0)

| escape 001 11100101 |

92 80387 Math Coprocessor Instruction Set

Constants

FLDZ = Load +0.0 into ST(0)

| escape001 11101110 |

FLD1 = Load +1.0 into ST(0)

| escape 001 11101000 |

FLDPI = Load = Into ST(0)

| escape001 11101011 |

FLDL2T = Load log, 10 into ST(0)

| escape 001 11101001 |

FLDL2E = Load log, e Into ST(0)

| escape 001 11101010 |

FLDLG2 = Load log, 2 into ST(0)

| escape 001 11101100 |

FLDLN2 = Load log, 2 into ST(0)

| escape 001 11101101 |

80387 Math Coprocessor Instruction Set

93

Arithmetic

FADD = Addition

Integer/Real Memory with ST(0)

i escape MF 0 mod 000 rim

ST(i) and ST(0)
| escapedPo 110008T() |

FSUB = Subtraction

Integer/Real Memory with ST(0)

| escape MF 0 mod 10R r/m l
ST(i) and ST(0)
| escaped PO 1110Rr/m l

FMUL = Mulitiplication

Integer/Real Memory with ST(0)

| escape MF 0 mod 00 1r/m l
ST(i) and ST(0)
| escaped P 0O 11001 r/m |

FDIV = Division

Integer/Real Memory with ST(0)

| escape MF 0 mod11Rr/m l
ST(i) and ST(0)
| escaped PO 1111Rr/m l

94 80387 Math Coprocessor Instruction Set

FSQRT = Square Root of ST(0)

| escape 001 11111010 |

FSCALE = Scale ST(0) by ST(1)

| escape001 11111101 |

FPREM = Partial Remainder of ST(0) = ST(1)

| escape 001 11111000 |

FPREM1 = IEEE Partial Remainder

| escape 001 11110101 |

FRNDINT = Round ST(0) to Integer

| escape0o1 11111100 |

FXTRACT = Extract Components of ST(0)

| escape 001 11110100 |

FABS = Absolute Value of ST(0)

| escape0o1 11100001 |

FCHS = Change Sign of ST(0)

| escape0o01 11100000 |

Transcendental

FPTAN = Partial Tangent of ST(0)

| escape0o1 11110010 |

80387 Math Coprocessor Instruction Set 95

FPATAN = Partial Arctangent of ST(1) + ST(0)

| escape0o1 11110011 |
FSIN = Sine
| escape 001 11111110 |

FCOS = Cosine

| escape001 11111111 |

FSINCOS = Sine and Cosine

| escape0o1 11111011 |

F2XM1 = 25T(0) -1

| escape0o1 11110000 |

FYL2X = ST(1) x Log, [ST(0)]

| escape 001 11110001 |

FYL2XP1 = ST(1) x Log, [ST(0) + 1]

| escape0o1 11111001 |

Processor Control

FINIT = Initialize NPX

| escape 011 11100011 |

FSTSW AX = Store Control Word

| escape 111 11100000 |

96 80387 Math Coprocessor Instruction Set

FLDCW = Load Control Word

| escape001 mod101rm |

FSTCW = Store Control Word

| escape 001 mod 111 r/m l

FSTSW = Store Status Word

| escape 101 mod111r/m l

FCLEX = Clear Exceptions

| escape011 11100010 |

FSTENV = Store Environment

I escape 001 mod 110r/m 1

FLDENV = Load Environment

I escape 00 1 mod 100 r/m l

FSAVE = Save State

l escape 101 mod 110r/m |

FRSTOR = Restore State

| escape 10 1 mod 100 r/m |

FINCSTP = Increment Stack Pointer

| escape 001 11110111 |

80387 Math Coprocessor Instruction Set

97

FDECSTP = Decrement Stack Pointer

| escape0o1 11110110 |

FFREE = Free ST(l)

| escape 101 11000ST() |

FNOP = No Operation

| escapeoo 11010000 |

98 80387 Math Coprocessor Instruction Set

Index

A

AAA instruction
AAD instruction
AAM instruction
AAS instruction
ADC instruction 18, 60

ADD instruction 18, 59

address mode 47

address size prefix 82

address space 1,2,5,6

AND instruction 22, 66
arithmetic instructions 18, 39, 59,
94

ARPL instruction 33, 83

bit manipulation instructions 71
BOUND instruction 30, 81

BSF instruction 71

BT instruction 71

BTC instruction 71

BTR instruction 71

BTS instruction 72

C

CALL instruction 26, 72
CBW instruction 21, 64
CLC instruction 30, 58
CLD instruction 31, 58
CLl instruction 31, 58
clock generator 3

CLTS instruction 58
CMC instruction 30
CMP instruction 20, 62
CMPS instruction 24, 68
comparison instructions 37, 91

20, 63
21, 64
21, 64
20, 63

conditional byte set 78
conditional jumps 73

conditional test field 52

constants 38, 93

control register field 53

control transfer instructions 26, 72
CTS instruction 31

CWD instruction 21, 64

D

DAA instruction 20, 63

DAS instruction 20, 63

data pointers 87

data transfer 35

data transfer instructions 14, 35,
54, 90

data types 2, 3, 12

data types, math coprocessor 3
debug register field 53

DEC instruction 19, 62
descriptors 6, 43

DIV instruction 21, 64

effective address 47

effective address size prefix 44
encoding field summary 46, 86
encoding, instructions 46
ENTER instruction 29, 80
ESC instruction 31, 82
exception 1,5

exception conditions 4

Index 99

F

FABS instruction 40, 95
FADD instruction 39, 94
FCHS instruction 40, 95
FCLEX instruction 42, 97
FCOM instruction 37, 91
FCOMP instruction 37, 92
FCOMPP instruction 37, 92
FCOS instruction 96
FDECSTP instruction 42, 98
FDIV instruction 39, 94
FFREE instruction 42, 98
FINCSTP instruction 42, 97
FINIT instruction 96

FINT instruction 41

flag control instructions 58
FLD instruction 35, 90
FLDCW instruction 41, 97
FLDENV instruction 42, 97
FLDLG?2 instruction 38, 93
FLDLN2 instruction 38, 93
FLDL2E instruction 38, 93
FLDL2T instruction 38, 93
FLDPI instruction 38, 93
FLDZ instruction 38, 93
FLD1 instruction 38, 93
FMUL instruction 39, 94
FNOP instruction 42, 98
FPATAN instruction 40, 96
FPREM instruction 40, 95
FPREM1 instruction 95
FPTAN instruction 40, 95
FRNDINT instruction 40, 95
FRSTOR instruction 42, 97
FSAVE instruction 42, 97
FSCALE instruction 40, 95
FSETPM instruction 41
FSIN instruction 96
FSINCOS instruction 96
FSQRT instruction 40, 95
FST instruction 36, 90
FSTCW instruction 41, 97

100 Index

FSTENV instruction 42, 97
FSTP instruction 36, 91
FSTSW AX instruction 41, 96
FSTSW instruction 41, 97
FSUB instruction 39, 94
FTST instruction 38, 92
FUCOM instruction 92
FUCOMP instruction 92
FUCOMPRP instruction 92
FXAM instruction 38, 92
FXCH instruction 37, 91
FXTRACT instruction 40, 95
FYL2X instruction 41, 96
FYL2XP1 instruction 41, 96
F2XM1 instruction 41, 96

G

general register field 51
global descriptor table 6

H

hardware interface 3, 12
HLT instruction 31, 81

1/0 ports 3

IDIV instruction 21, 64
IIMUL instruction 21
IMUL instruction 21, 63
IN instruction 16, 56
INC instruction 18, 60
INS instruction 24, 68
instruction pointers 87
instruction set, math
coprocessor 86

INT instruction 30, 80
interrupt 1,5
interrupt instructions 80
interrupts 4

INTO instruction 30, 80

IRET instruction 30, 81

J

JB/JNAE instruction 27,74
JBE/JNA insiruction 28, 75
JCXZ instruction 29, 77
JE/JZ instruction 27,74
JECXZ instruction 77
JL/JNGE instruction 27,76
JLE/UNG instruction 27,77
JMP instruction 26, 72
JNB/JAE instruction 28, 74
JNBE/JA instruction 28, 75
JNE/JNZ instruction 28,75
JNL/JGE instruction 28, 77
JNLE/JG instruction 28, 77
JNO instruction 29, 74
JNP/JPO instruction 29, 76
JNS instruction 29, 76
JO instruction 28, 73
JP/JPE instruction 28, 76
JS instruction 28, 75

L

LAHF instruction 17, 58
LAR instruction 33, 83
LDS instruction 17, 57
LEA instruction 17,57
LEAVE instruction 29, 80
LES instruction 17,57
LFS instruction 57
LGDT instruction 32, 83
LGS instruction 57

LIDT instruction 32, 83
LLDT instruction 32, 84
LMSW instruction 32, 84
local descriptor table 6
LOCK instruction 31, 82
LODS instruction 24, 69
logic instructions 22, 64
LOOP instruction 29, 78

LOOPNZ/LOOPNE instruction 29,

78

LOOPZ/LOOPE instruction 29, 78

LSL instruction 33, 84
LSS instruction 57
LTR instruction 32, 84

memory, virtual 2

mode, protected 2

mode, real address 5
mode, real-address 1
MOV instruction 14, 54, 81
MOVS instruction 24, 69
MOVSX instruction 55
MOVZX instruction 55
MUL instruction 21, 63

NEG instruction 20, 63
NOP instruction 82
NOT instruction 24, 68

o)

operand length field 50
operand size 44

operand size prefix 44, 82
operation direction field 52
OR instruction 23, 67
OUT instruction 16, 57
OUTS instruction 24, 69

P

page directory 8

page directory physical base
address register 9

page fault linear address
register 8

page frame 8

page tables 8

Index

101

paging 6

paging mechanism, 80386 8
pointer 1,2,5

pointer image 87

pointer registers 87

POP instruction 15, 56

POPA instruction 16, 56

POPF instruction 17, 58

prefix bytes 82

processor control instructions 30,
81, 96

processor extension 82
programming interface 3
protected mode 2, 6, 11
protected virtual address mode 2,
6

protection control instructions 32,
83

PUSH instruction 15, 65

PUSHA instruction 15, 55
PUSHF instruction 17, 58

real address mode 5, 11
real-address mode 1
registers 3

REP INS instruction 70
REP LODS instruction 70
REP MOVS instruction 70
REP OUTS instruction 70
REP STOS instruction 70
REP/REPNE, REPZ/REPNZ
instructions 25

REPE CMPS instruction 69
REPE SCAS instruction 70
repeated string manipulation
instructions 69

REPNE CMPS instruction 70
REPNE SCAS instruction 70
RET instruction 27,73
rotate instructions 22, 64

102 Index

S

SAHF instruction 17, 59
SBB instruction 19, 61
scale-index-base byte 47
SCAS instruction 24, 69
segment control instructions 57
segment descriptors 43
segment override prefix 82
segment register field 51
segments 1,5
SETB/SETNAE instruction 78
SETBE/SETNA instruction 79
SETE/SETZ instruction 78
SETL/SETNGE instruction 79
SETLE/SETNG instruction 80
SETNB instruction 78
SETNBE/SETA instruction 79
SETNE/SETNZ instruction 79
SETNL/SETGE instruction 80
SETNLE/SETG instruction 80
SETNO instruction 78
SETNP/SETPO instruction 79
SETNS instruction 79
SETO instruction 78
SETP/SETPE instruction 79
SETS instruction 79

SGDT instruction 32, 84
shift instructions 22, 64
SHLD instruction 65

SHRD instruction 66

SIDT instruction 32, 84
sign extend field 52

SLDT instruction 32, 84
SMSW instruction 33, 84
STC instruction 30, 59

STD instruction 31, 59

STl instruction 31, 59
STOS instruction 24, 69
STR instruction 32, 84
string manipulation
instructions 24, 68

SUB instruction 19, 61

T

TEST instruction 23, 67

test register field 53
transcendental instructions 95
two-level paging 8

\'}

VERR instruction 33, 85
VERW instruction 33, 85
virtual memory 2,6
virtual 8086 flag 7
virtual 8086 mode 7, 11

w

WAIT instruction 31, 82

X

XCHG instruction 16, 56
XLAT instruction 16
XOR instruction 23, 68

Numerics

80286 microprocessor 1
80287 math coprocessor 2
80386 microprocessor 5
80386 paging mechanism 8
80387 clock generator 12
80387 coprocessor 86

80387 exception conditions 12
80387 I/O ports 12

80387 math coprocessor 10

Index 103

Notes:

104 Index

Direct Memory Access Controller (Type 1)

Description 1
DMA Controller Operations 2
Data Transfers between Memory and I/O Devices 2
Read Verifications 2
DMAI/OAddressMap 3
Byte Pointer 4
DMARegisters e 4
Memory Address Register 4
I/0 Address Register 5
Transfer CountRegister 5
Temporary Holding Register 5
Mask Register 6
Mode Register 7
Extended Mode Register 7
Status Register 8
DMA Extended Function Register (Hex0018) 9
Arbus Register 9
DMA Extended Operations 10
ExtendedCommands 11
Direct Memory Access Controller (Type 1) |

Figures

©

PNO oA @N

DMAI/OAddressMap
DMARegisters
Set/Clear Single Mask Bit Using 8237 Compatible Mode

DMA Mask Register Write Using 8237 Compatible Mode . . .
8237 Compatible Mode Register
Extended Mode Register
Status Register
DMA Extended Function Register (Hex0018)
Arbus Register
DMA Extended Address Decode
DMA Extended Commands
DMA Channel 2 Programming Example, Extended
Commands

Direct Memory Access Controller (Type 1)

Description

The Direct Memory Access (DMA) controller allows 1/0 devices to
transfer data directly to and from memory. This frees the system
microprocessor of 1/0 tasks, resulting in a higher throughput.

The DMA controller is software programmable. The system
microprocessor can address the DMA controller and read or modify
the internal registers to define the various DMA modes, transfer
addresses, transfer counts, channel masks, and page registers.

The functions of the DMA controller can be grouped into two
categories: program mode and DMA transfer mode.

Program mode is when the system microprocessor accesses the
DMA controlier within the specific address range. These addresses
are identified in Figure 1 on page 3. During program mode, the DMA
registers can be read from or written to.

Transfer mode is when the DMA controller performs data transfer.
This is initiated when a DMA slave has won the arbitration bus and
the DMA controller has been programmed to service the winning
request in process. Data transfers can be a single transfer, or
multiple transfers (burst).

Deactivation of cD CHRDY by a device can extend accesses for slower
1/0 or memory devices.

The DMA controller supports the following:

* Register and program compatibility with the IBM Personal
Computer AT® DMA channels (8237 compatible mode)

* 16MB (MB equals 1,048,576 bytes) 24-bit address capability for
memory and 64KB (KB equals 1024 bytes) 16-bit address
capability for 110

¢ Eight independent DMA channels capable of transferring data
between memory and I/0 devices

Personal Computer AT is a registered trademark of the International
Business Machines Corporation.

Direct Memory Access Controller (Type 1) 1

* DMA operation with a separate read and write cycle for each
transfer operation

¢ Channel programmable for byte or word transfer

¢ Extended operations:
— Extended program control
— Extended Mode register

¢ 8- and 16-bit DMA slaves only

* Programmable arbitration levels for two channels.

DMA Controller Operations

The DMA controller does two types of operations:

¢ Data transfers between memory and I/0 devices
* Read verifications.

Data Transfers between Memory and I/0 Devices

The DMA controller performs serial transfers for all read and write
operations. These transfers can be between memory and I/0 on any
channel. Data is read from a device and latched in the DMA
controller before it is written back to a second device. The memory
address needs to be specified only for a DMA data transfer. A
programmable 16-bit I/O address can be provided during the I/0
portion of the transfer as a programmable option. If the
programmable 16-bit I/0 address is not selected, the I/0 address is
forced to hex 0000 during the I/O transfer.

Read Verifications
The DMA controller can do a memory-read operation without a

transfer. The address and the count are updated, and the terminal
count is provided.

2 Direct Memory Access Controller (Type 1)

DMA /O Address Map

(Hex) Description

0000 Channel 0, Memory Address Register

0001 Channel 0, Transfer Count Register

0002 Channel 1, Memory Address Register
0003 Channel 1, Transfer Count Register

0004 Channel 2, Memory Address Register
0005 Channel 2, Transfer Count Register

0006 Channel 3, Memory Address Register
0007 Channel 3, Transfer Count Register

0008 Channel 0-3, Status Register

000A Channel 0-3, Mask Register (Set/Reset)
000B Channel 0-3, Mode Register (Write)

000C Clear Byte Pointer (Write)

000D DMA Controller Reset (Write)

000E Channel 0-3, Clear Mask Register (Write)
000F Channel 0-3, Write Mask Register

0018 Extended Function Register (Write)

001A Extended Function Execute

0081 Channel 2, Page Table Address Register **
0082 Channel 3, Page Table Address Register **
0083 Channel 1, Page Table Address Register **
0087 Channel 0, Page Table Address Register **
0089 Channel 6, Page Table Address Register **
008A Channel 7, Page Table Address Register **
008B Channel 5, Page Table Address Register **
008F Channel 4, Page Table Address Register **
00C0O Channel 4, Memory Address Register
00C2 Channel 4, Transfer Count Register

00C4 Channel 5, Memory Address Register
00C6 Channel 5, Transfer Count Register

00C8 Channel 6, Memory Address Register
00CA Channel 6, Transfer Count Register

00ccC Channel 7, Memory Address Register
00CE Channel 7, Transfer Count Register

00DO Channel 4-7, Status Register

00D4 Channel 4-7, Mask Register (Set/Reset)
00D6 Channel 4-7, Mode Register (Write)

00D8 Clear Byte Pointer (Write)

00DA DMA Controller Reset (Write)

00DC Channel 4-7, Clear Mask Register (Write)
00DE Channel 4-7, Write Mask Register

** Upper Byte of Memory Address Register.

Bit
Description

00-15
00-15
00-15
00-15
00-15
00-15
00-15
00-15
00-07
00-02
00-07
N/A

N/A

N/A

00-03
00-07
00-07
00-07
00-07
00-07
00-07
00-07
00-07
00-07
00-07
00-15
00-15
00-15
00-15
00-15
00-15
00-15
00-15
00-07
00-02
00-07
N/A

N/A

N/A

00-03

Byte
Pointer

Used
Used
Used
Used
Used
Used
Used
Used

Used *

Used
Used
Used
Used
Used
Used
Used
Used

* Used Only During Extended Functions, see “Extended Commands” on page 11.

Figure 1. DMA I/O Address Map

Direct Memory Access Controller (Type 1)

3

Byte Pointer

A byte pointer gives 8-bit ports access to consecutive bytes of
registers greater than 8 bits. For program 1/0, the registers which
use it are the Memory Address registers (3 bytes), the Transfer Count
registers (2 bytes), and the I/0O Address registers (2 bytes). Interrupts
should be masked off when programming DMA controller operations.

DMA Registers

All system microprocessor adcess to the DMA controller must be 8-bit
1/0 instructions. The following figure lists the name and size of the
DMA registers.

Size Quantity of
Register (Bits) Registers Allocation
Memory Address 24 8 1 per Channel
I/0 Address 16 8 1 per Channel
Transfer Count 16 8 1 per Channel
Temporary Holding 16 1 All Channels
Mask 4 2 1 for Channels 7 - 4

1 for Channels 3- 0
Arbus 4 2 1 for Channel 4
1 for Channel 0

Mode 8 8 1 per Channel
Status 8 2 1for Channel 7 - 4

1 for Channel 3 -0
Function 8 1 All Channels
Refresh 9 1 Independent of DMA

Figure 2. DMA Registers
Memory Address Register

Each channel has a 24-bit Memory Address register, which is loaded
by the system microprocessor. The Mode register determines
whether the address is incremented or decremented. The Mode
register can be read by the system microprocessor in successive 1/0
byte operations. To read this register, the microprocessor must use
the extended DMA commands.

4 Direct Memory Access Controller (Type 1)

I/0 Address Register

Each channel has a 16-bit I/0 Address register, which is loaded by
the system microprocessor. The bits in this register do not change
during DMA transfers. This register can be read by the system
microprocessor in successive I/0 byte operations. To read this
register, the microprocessor must use the extended DMA commands.

Typically, a DMA slave is selected for DMA transfers by a decode of
the arbitration level, status (-so exclusively ORed with -s1), and M/-10.
In this case, the respective I/O address register must have a value of
zero.

A DMA slave may be selected based on a decode of the address
rather the arbitration level. In this case, the respective I/0 address
register must have the proper I/0 address value.

Transfer Count Register

Each channel has a 16-bit Transfer Count register, which is loaded by
the system microprocessor. The transfer count determines how
many transfers the DMA channel will execute before reaching the
terminal count. The number of transfers is always 1 more than the
count specifies. If the count is 0, the DMA controller does one
transfer. This register can be read by the system microprocessor in
successive I/0 byte operations. To read this register, the system
microprocessor can use only the extended DMA commands.

Temporary Holding Register

This 16-bit register holds the intermediate value for the serial DMA
transfer taking place. A DMA operation requires the data to be held
in the register before it is written back. This register is not accessible
by the system microprocessor.

Direct Memory Access Controller (Type 1) 5

Mask Register

Bit Function

7-3 Reserved = 0

2 0 Clear Mask Bit
1 Set Mask Bit

1,0 00 Select Channel 0 or 4
01 Select Channel 1or 5
10 Select Channel 2 or 6
11 Select Channel 3 or 7

Figure 3. Set/Clear Single Mask Bit Using 8237 Compatible Mode

Bit Function
7-4 Reserved = 0
3 0 Clear Channel 3 or 7 Mask Bit

1 Set Channel 3 or 7 Mask Bit

2 0 Clear Channel 2 or 6 Mask Bit
1 Set Channel 2 or 6 Mask Bit

1 0 Clear Channel 1 or 5 Mask Bit
1 Set Channel 1 or 5 Mask Bit

0 0 Clear Channel 0 or 4 Mask Bit
1 Set Channel 0 or 4 Mask Bit

Figure 4. DMA Mask Register Write Using 8237 Compatible Mode

Each channel has a corresponding mask bit that, when set, disables
the DMA from servicing the requesting device. Each mask bit can be
set to 0 or 1 by the system microprocessor. A system reset or DMA
Controller Reset command sets all mask bits to 1. A Clear Mask
Register command sets mask bits 0 - 3 or mask bits 4 -7 t0 0.

When a device requesting DMA cycles wins the arbitration cycle, and
the mask bit is set to 1 on the corresponding channel, the DMA
controller does not execute any cycles in its behalf and allows
external devices to provide the transfer. If no device responds, the
bus times out and causes a nonmaskable interrupt (NMI). This
register can be programmed using the 8237 compatible mode

6 Direct Memory Access Controller (Type 1)

commands (used by the IBM Personal Computer AT) or the extended
DMA commands.

Mode Register

The Mode register for each channel identifies the type of operation
that takes place when that channel transfers data.

Bit Function

7,6 Reserved = 0

54 Reserved = 0

3,2 00 Verify Operation

01 Write Operation
10 Read Operation
11 Reserved

1,0 Channel Accessed
00 Select Channel 0 or 4
01 Select Channel 1or §
10 Select Channel 2 or 6
11 Select Channel 3 or 7

Figure 5. 8237 Compatible Mode Register

The Mode register is programmed by the system microprocessor, and
its contents are reformatted and stored internally in the DMA
controller. In the 8237 compatible mode, this register can only be
written.

Extended Mode Register

Besides the 8237 compatible mode, all channels support an 8-bit
Extended Mode register. The Extended Mode register can be
programmed and read by the system microprocessor.

The DMA controller supports an Extended Mode register for each
channel that can be programmed and read by the system
microprocessor. This register is used whenever a DMA channel
requests a DMA data transfer.

The DMA channel must be programmed to match the transfer size of
the DMA slave on the channel. Bit 6 of this register is used to
program the size of the DMA transfer.

Direct Memory Access Controller (Type 1) 7

Bit Function

7 Reserved = 0
6 = 8-Bit Transfer
1 = 16-Bit Transfer
5 Reserved = 0
4 Reserved = 0
3 0 = Read Memory Transfer

1 = Write Memory Transfer

2 0 = Read Verifications Operation
1 = Data Transfer Operation

1 Reserved = 0

0 0 = 1/0 Address equals 0000H

1 = Use programmed /O Address

Figure 6. Extended Mode Register
Status Register

The Status register, which can be read by the system microprocessor,
contains information about the status of the devices. This information
tells which channels have reached the terminal count and which
channels have requested the bus since the last time the register was
read.

-
-

Function

Channel 3 or 7 Request
Channel 2 or 6 Request
Channel 1 or 5 Request
Channel 0 or 4 Request
TC on Channel 3or 7
TC on Channel 2 or 6
TC on Channel 1or 5
TC on Channel 0 or 4

O=NWHOON

Figure 7. Status Register

Bits 3 through 0 in each Status register are set every time a terminal
count is reached by a corresponding channel. Bits 7 through 4 are
set when a corresponding arbitration level has controlled the bus. All
bits are cleared by a system reset or following a system

8 Direct Memory Access Controller (Type 1)

microprocessor Status Read command. This register can be read
using the 8237 commands or extended DMA commands.

DMA Extended Function Register (Hex 0018)

This 8-bit register minimizes 1/0 address requirements and provides
the extended program functions. The system microprocessor loads
this register using 1/0 write operations. See “Extended Commands”
on page 11 for more information.

Bit Function

7-4 Program Command (DMA Extended Commands)
3 Reserved = 0

2-0 Channel Number (0 through 7)

Figure 8. DMA Extended Function Register (Hex 0018)
Arbus Register

This register is used for virtual DMA operations.

Bit Function
7-4 Reserved
3-0 Arbitration Level

Figure 9. Arbus Register

Virtual DMA channel operation permits programming of the
arbitration level assignment for channels 0 and 4 using the two 4-bit
Arbus registers. These registers enable the system microprocessor
to dynamically reassign the arbitration ID value by which the DMA
controller responds to bus arbitration for DMA requests. This allows
channels 0 and 4 to service devices at any arbitration level. The
value of arbitration level hex F is reserved.

Direct Memory Access Controller (Type 1)

DMA Extended Operations

The function register supports an extended set of commands for the
DMA channels. The extended command hex 8 programs the Arbus
registers; the upper 4 bits of the Extended Function register are set to
a value of 8 to select the Arbus register, and the lower 4 bits are set
to the channel number (0 or 4). If channel 0 = 1-3,5-7 then
channel 0 is active; if channel 0 = 4 then channel is inactive. The
system microprocessor uses the following addresses to gain control

of the internal DMA registers.

1/0 Address
(Hex)

0018
0019
001A
oo1B

Command

Write Extended Function Register
Reserved

Execute Extended Function Register
Reserved

Figure 10. DMA Extended Address Decode

The system microprocessor uses the following steps to write to or

read from any of the DMA internal registers:

1. Write to the Extended Function register by executing an I/0 Write
instruction to address hex 0018, with the proper data to indicate
the function and the channel number. The internal byte pointer is
always reset to 0 when an I/0O write to address hex 0018 is
detected.

2. Execute the Extended Function command by doing an I/O Read or
1/0 Write instruction to address hex 001A. The byte pointer
automatically increments and points to the next byte each time
port address hex 001A is used. This step is not required for
Direct commands because they are executed when the Out

command to address hex 0018 is detected.

10 Direct Memory Access Controller (Type 1)

Extended Commands

The following figure shows the available extended command set

contained in the Extended Function register.

Registers/Bits Accessed

1/0 Address Register

Reserved

Memory Address Register Write
Memory Address Register Read
Transfer Count Register Write
Transfer Count Register Read
Status Register Read

Mode Register

Arbus Register

Mask Register Set Single Bit **
Mask Register Reset Single Bit **
Reserved

Reserved

Master Clear **

Reserved

Reserved

* Bits 7-4 of the Extended Function Register.

00-15

00-23
00-23
00-15
00-15
00-07
00-07
00-07

** Direct commands to the Extended Function register

Extended
Command
(Hex)
(7-4%)

TMODOWPOONONEWN = O

Byte
Pointer

Used

Used
Used
Used
Used

Figure 11. DMA Extended Commands

Direct Memory Access Controller (Type 1)

1

The following is an example showing the programming of DMA
channel 2 using the 8237 compatible mode and the extended mode.
In this example, to perform each step, write the data indicated to the
corresponding addresses.

Program Step 8237 Compatible Mode Extended Mode
Address/Data Address/Data

Set Channel Mask Bit (000AH) x6H (0018H) 92H
Clear Byte Pointer (000CH) xxH (0018H) 22H
Write Memory Address (0004H) xxH (001AH) xxH
Write Page Table Address (0081H) xxH (001AH) xxH
Clear Byte Pointer (000CH) xxH (0018H) 42H
Write Register Count (0005H) xxH (001AH) xxH
Write Register Count (0005H) xxH (001AH) xxH
Write Mode Register (000BH) xxH (0018H) 72H

(001AH) xxH
Clear Channel 2 Mask Bit (000AH) x2H (0018H) A2H
x’s represent data.

Figure 12. DMA Channel 2 Programming Example, Extended Commands

12 Direct Memory Access Controller (Type 1)

Interrupt Controller (Type 1)

Description
Interrupt Assignments
Interrupt Sharing
Interrupt Controller Registers
Interrupt Request Register and In-Service Register
Interrupt Mask Register

Initialization Command Registers and Operation Command

Registers
Modes of Operation
Fully-NestedMode
Special Fully-NestedMode
Automatic RotationMode
Specific RotationMode
SpecialMaskMode
PoliMode
Level-SensitiveMode
Programming the Interrupt Controller
Initialization Command Byte1
Initialization CommandByte2
Initialization CommandByte3
Initialization Command Byte4
Operation CommandByte1
Operation CommandByte2
Operation CommandByte3

Interrupt Controller (Type 1) |

Figures

ONOOR NS

Interrupt Level Assignments by Priority 1
Automatic RotationMode 6
Specific Rotation Mode when IRQ5 Has the Lowest Priority . 7
Poll Mode StatusByte 8
Initialization Command Byte 1 e e 9
Initialization CommandByte2 9
Initialization Command Byte 3 10
Initialization CommandByte4 10
Operation CommandByte1 11
Operation CommandByte2 11
Operation Command Byte 2 (Bits7-5) 12
Operation Command Byte 2 (Bits2-0) 12
Operation CommandByte3 12
Operation Command Byte 3 (Bits6and5) 13
Operation Command Byte 3 (Bits 1and0) 13

Interrupt Controller (Type 1)

Description

The system provides 16 levels of hardware interrupts. Any interrupt
can be masked, including the nonmaskable interrupt. The interrupt
controller must be initialized to the level-sensitive mode; the
edge-triggered mode is not supported. Attempts to set the controller
to the edge-triggered mode will result in level-sensitive operation.
For more information on nonmaskable interrupt, see the
system-specific technical references.

Interrupt Assignments

The following figure shows the interrupt assignments, interrupt
levels, and their functions. The interrupt levels are listed by order of
priority, from highest (NMI) to lowest (IRQ 7). See system-specific
technical references for masking interrupts.

Level Master Function Level Slave Function
NMI Channel Check *

IRQO Timer

IRQ 1 Keyboard

IRQ 2 Cascade Interrupt Control — IRQ 8 Real Time Clock

IRQ 9 Redirect Cascade
IRQ 10 Reserved
IRQ 11 Reserved
IRQ 12 Auxiliary Device
IRQ 13 Math Coprocessor Exception
IRQ 14 Fixed Disk
IRQ 15 Reserved

IRQ 3 Serial Alternate

IRQ 4 Serial Primary

IRQ 5 Reserved

IRQ 6 Diskette

IRQ7 Parallel Port

IRQ 8 through 15 are cascaded through IRQ 2
* For Channel Check and other System Specific Functions, Refer to the
System-Specific Technical References.

Figure 1. Interrupt Level Assignments by Priority

Interrupt Controller (Type 1) 1

Interrupt Sharing

Hardware interrupt IRQ9 is defined as the replacement interrupt level
for the cascade level IRQ2. Program interrupt sharing should be
implemented on IRQ2, interrupt hex OA. The following processing
occurs to maintain compatibility with the IRQ2 used by IBM Personal
Computer products:

1.

A device drives the interrupt request active on IRQ2 of the
channel.

. This interrupt request is mapped in hardware to IRQ9 input on the

slave interrupt controller.

. When the interrupt occurs, the system microprocessor passes

control to the IRQ9 (interrupt hex 71) interrupt handler.

. The interrupt handler performs an end of interrupt (EOI) to the

slave interrupt controller and passes control to the IRQ2
(interrupt hex OA) interrupt handler.

. The IRQ2 interrupt handler, when handling the interrupt, causes

the device to reset the interrupt request prior to performing an
EOI to the master interrupt controller that finishes servicing the
IRQ2 request.

Note: Prior to the programming of the interrupt controllers, interrupts

should be disabled with a CLI instruction. This includes the
Mask register, EOIs, initialization command bytes, and
operation command bytes.

Interrupt Controller Registers

The interrupt controller contains the following registers:

Interrupt Request register
In-Service register

Interrupt Mask register
Initialization Command registers
Operation Command registers.

Interrupt Controller (Type 1)

Interrupt Request Register and In-Service
Register

These registers handle incoming interrupt requests. The Interrupt
Request register stores all interrupt levels requesting service. The
In-Service register stores all interrupt levels currently being serviced.
A priority resolver prioritizes the bits in the Interrupt Request register
and strobes the bit with the highest priority into the corresponding bit
of the In-Service register.

Both registers can be read by issuing a Read Register command
through Operation Command Byte 3, and then reading port hex 0020
or 00A0. The controller keeps track of the last register selected;
therefore, subsequent reads of the same register do not require
another Operation Command Byte 3 to be written. See “Operation
Command Byte 3” on page 12 for more information.

Note: After initialization, the controller is set to read the Interrupt
Request register.

Interrupt Mask Register

The Interrupt Mask register contains bits that mask each of the
interrupt request lines of the Interrupt Request register. Lower
priority levels are not affected when a higher priority level is masked.

The contents of this register are placed on the output data bus when
-READ is active and port hex 0021 or 00A1 is accessed.

Initialization Command Registers and Operation
Command Registers

These registers store commands from the system microprocessor
that define initialization parameters and operating modes. See
“Programming the Interrupt Controller” on page 8 for more
information.

Interrupt Controller (Type 1) 3

Modes of Operation

The interrupt controller can be programmed to operate in a variety of
modes through the Initialization Command bytes and the Operation
Command bytes.

Fully-Nested Mode

In the fully-nested mode, interrupts are prioritized from 0 (highest
priority) to 7 (lowest priority). This mode is automatically entered
after initialization unless another mode has been defined.

Note: The priorities can be changed by rotating the priorities through

Operation Command Byte 2.

A typical interrupt request occurs in the following manner:

1.

One or more ‘interrupt request’ lines are set active causing the
corresponding bits in the Interrupt Request register to be set to 1.

. The interrupt controller evaluates the requests and sends an

interrupt to the system microprocessor, if appropriate.

. The system microprocessor responds with an ‘interrupt

acknowledge’ pulse to the interrupt controller.

. The controller prioritizes the unmasked bits in the Interrupt

Request register and strobes the bit with the highest priority into
the corresponding bit of the In-Service register. No data is sent
to the system microprocessor.

Note: If an interrupt request is not present (for example, the
duration of the request was too short), the interrupt
controller issues an interrupt 7.

The system microprocessor sends a second ‘interrupt
acknowledge’ pulse to the interrupt controller.

The interrupt controller responds by releasing the interrupt vector
on the data bus, where it is read by the system microprocessor.

The highest priority in-service bit remains set to 1 until the proper
End of Interrupt command is issued by the interrupt subroutine. If
the source of the interrupt request is the slave interrupt
controller, the End of Interrupt command must be issued twice,
once for the master and once for the slave. When the in-service

Interrupt Controlier (Type 1)

bit is set to 1, all other interrupts with the same or lower priority
are inhibited; interrupts with a higher priority cause an interrupt,
but the interrupt is acknowledged only if the
system-microprocessor interrupt input has been re-enabled by
software.

The End of Interrupt command has two forms, specific and
nonspecific. The controller responds to a nonspecific End of Interrupt
command by resetting the highest in-service bit of those set. In a
mode that uses a fully-nested interrupt structure, the highest
in-service bit set is the level that was just acknowledged and
serviced. In a mode that can use other than the fully-nested interrupt
structure, a specific End of Interrupt command is required to define
which in-service bit to reset.

Note: An in-service bit masked by an Interrupt Mask register bit
cannot be reset by a nonspecific End of Interrupt command
when in the special mask mode. See “Special Mask Mode” on
page 7 for more information.

Special Fully-Nested Mode

The special fully-nested mode is used when the priority in the slave
interrupt controller must be preserved. This mode is similar to the
normal nested mode with the following exceptions:

¢ When the slave’s interrupt request is in service, the slave can still
generate additional interrupt requests of a higher priority that are
recognized by the master, and initiate interrupts to the system
microprocessor.

e Upon completion of the interrupt service routine, software must
send a nonspecific End of Interrupt command to the slave and
read the slave’s In-Service register to ensure that the interrupt
just serviced was the only one generated by the slave. If the
register is not empty, additional interrupts are pending, and an
End of Interrupt command must not be sent to the master. If the
register is empty, a nonspecific End of Interrupt command can be
sent to the master.

The special fully-nested mode is selected through Initialization

Command Byte 4. See “Initialization Command Byte 4” on page 10
for more information.

Interrupt Controller (Type 1) §

Automatic Rotation Mode

The automatic rotation mode accommodates multiple devices having
the same interrupt priority. After a device is serviced, it is assigned
the lowest priority and must wait until all other devices requesting an
interrupt are serviced once before the first device is serviced again.

The following example shows the status and priorities of the
In-Service register bits before and after bit 4 of the Interrupt-Request
register is serviced by a Rotation on Nonspecific End of Interrupt
command.

In-Service Status Priority Status Priority
Register Bits before Service before Rotate after Service after Rotate
7 0 7 (Lowest) 0 2

6 1 (Pending) 6 1 (Pending) 1

5 0 5 0 0 (Highest)
4 1 (Pending) 4 0 (Serviced) 7 (Lowest)
3 0 3 0 6

2 0 2 0 5

1 0 1 0 4

0 0 0 (Highest) 0 3

Figure 2. Automatic Rotation Mode

The automatic rotation mode is selected by issuing a Rotation on
Nonspecific End of Interrupt command through Operation Command
Byte 2. See “Operation Command Byte 2" on page 11 for more
information.

Specific Rotation Mode

The specific rotation mode allows the application programs to change
the priority levels by assigning the lowest priority to a specific
interrupt level. Once the lowest-level priority is selected, all other
priority levels change. The following example compares the
normal-nested mode to the specific rotation mode with bit 5 of the
Interrupt Request register set to the lowest priority.

6 Interrupt Controller (Type 1)

Interrupt Request Nested Mode Specific Rotation Mode
Register Bits Priority Level Priority Level

7 7 (Lowest) 1

6 6 0 (Highest)

5 5 7 (Lowest)

4 4 6

3 3 5

2 2 4

1 1 3

0 0 (Highest) 2

Figure 3. Specific Rotation Mode when IRQ5 Has the Lowest Priority

The specific rotation mode is selected by issuing a Rotate on Specific
End of Interrupt command or a Set Priority command through
Operation Command Byte 2. See “Operation Command Byte 2” on
page 11 for more information.

Special Mask Mode

The special mask mode allows application programs to selectively
enable and disable any interrupt or combination of interrupts at any
time during its execution. The special mask mode is selected through
Operation Command Byte 3. Once the controller is in the special
mask mode, setting a bit in Operation Command Byte 1 sets a
corresponding bit in the Interrupt Mask register. Each bit set in the
Interrupt Mask register masks the corresponding interrupt channel.
Interrupt channels above and below a masked channel are not
affected. See “Operation Command Byte 1” on page 11 and
“Operation Command Byte 3” on page 12 for more information.

Poll Mode

Before the poll mode can be used, a CLI instruction must be issued to
disable the system-microprocessor interrupt input. Devices are
serviced by software issuing a Poll command through Operation
Command Byte 3. The first ‘read’ pulse following a Poll command is
interpreted by the controller as an ‘interrupt acknowledge’ pulse; the
controller sets the appropriate in-service bit and reads the priority
level. The byte placed on the data bus during a ‘read’ pulse is shown
in the following figure.

Interrupt Controller (Type 1) 7

Bit Function

7 Interrupt Present
6-3 Undefined
2-0 Highest Priority Level

Figure 4. Poll Mode Status Byte

Bit7 This bit is set to 1 if an interrupt is present.
Bits 6 -3 These bits are not used and may be set to either 0 or 1.

Bits 2-0 These bits contain the binary code of the highest priority
level requesting service.

Level-Sensitive Mode

The interrupt controller cannot be placed in the edge-triggered mode.
In the level-sensitive mode, interrupt requests are recognized by a
high level on the interrupt-request input. Interrupt requests must be
removed before the End of Interrupt command is issued to prevent a
second interrupt from occurring.

Programming the Interrupt Controller

Before the system can be used, the interrupt controller must be
programmed with four sequential initialization commands. When a
command is issued to a master at port hex 0020 (or a slave at port
hex 00A0) with bit 4 set to 1, the command is recognized as
Initialization Command Byte 1. Initialization Command Byte 1 is the
first of four initialization commands required to program the interrupt
controller. The following events occur during the initialization
sequence:

1. The level sense circuit is set to the level-sensitive mode.
(Following the initialization procedure, interrupts are generated
by a high level on the interrupt-request input.)

2. The Interrupt Mask register is cleared.
3. IRQ7 is assigned priority 7.

4. The slave mode address is setto 7.

8 Interrupt Controller (Type 1)

5. The special mask mode is cleared and the controller is set to
read the Interrupt Request register.

Once the interrupt controller is programmed by the initialization
command bytes, the controller can be programmed by the operation
command bytes to operate in other modes.

Note: The master interrupt controller must be initialized before the
slave interrupt controller. Failure to do so will cause
unexpected results.

Initialization Command Byte 1

This is the first byte of the 4-byte initialization command sequence.
This byte is issued to either the master (port hex 0020) or the slave
(port hex 00A0).

Bit Function

-5 Reserved — Must be set to 0.
Initialization Command Byte 1 Identifier — Must be set to 1.
Level-Sensitive Mode — Must be set to 1.
Call Address Interval of 8 — Must be set to 0.
Cascade Mode — Must be set to 0.
4-byte Initialization Command Sequence — Must be set to 1.

O =NWAEN

Figure 5. Initialization Command Byte 1
Initialization Command Byte 2

This byte defines the address of the interrupt vector. Bits 7 through 3
define the five high-order bits of the interrupt vector address. Bits 2
through 0 are initialized to 0 and replaced by the hardware interrupt
level when an interrupt occurs. This byte is issued to either the
master (port hex 0021) or the slave (port hex 00A1).

Bit Function
7-3 Bits 7 - 3 of the Interrupt Vector Address
2-0 Initialized to 0

Figure 6. Initialization Command Byte 2

Interrupt Controller (Type 1) 9

Initialization Command Byte 3

This byte loads a value into an 8-bit slave register.

¢ |n the master device mode, this byte has a value of hex 04 to
identify interrupt 02 as a slave providing the input request.

¢ |n the slave device mode, this byte has a value of hex 02 to tell
the slave that it is using hardware interrupt 02 to communicate
with the master. The slave compares this value to the cascade
input; if they are equal, the slave releases the Interrupt Vector
Address on the data bus.

This byte is issued to either the master (port hex 0021) or the slave
(port hex 00A1).

Slave Master
Bit Function Function
7-3 0 0
2 1 0
1 0 1
0 0 0

Figure 7. Initialization Command Byte 3
Initialization Command Byte 4

This byte is issued to either the master (port hex 0021) or the slave
(port hex 00A1).

Bit Function

7-5 Reserved — Must be set to 0.

4 Special Fully-Nested Mode

3,2 Reserved — Must be set to 0.

1 Normal End of Interrupt — Must be set to 0.

0 80286/80386 Microprocessor Mode — Must be set to 1.

Figure 8. Initialization Command Byte 4

10 Interrupt Controller (Type 1)

Operation Command Byte 1
This byte controls the individual bits in the Interrupt Mask register.

This byte is issued to either the master (port hex 0021) or the slave
(port hex 00A1).

Bit Function

7-0 Interrupt Mask Bits 7 - 0

Figure 9. Operation Command Byte 1

Bits 7 -0 When set to 1, these bits inhibit their respective interrupt
request input signals.

Operation Command Byte 2

This byte controls the interrupt priority and End of Interrupt
command.

This byte is issued to either a master (port hex 0020) or a slave (port
hex 00AO0).

Bit Function

Rotate Mode

Set Interrupt Level

End of Interrupt Mode
, 3 Reserved — Must be set to 0
-0 Interrupt Level (When bit6 = 1)

NDAOON

Figure 10. Operation Command Byte 2

Bits 7 -5 These bits define the rotate mode, end of interrupt mode,
or a combination of the two, as shown in Figure 11 on
page 12.

Interrupt Controller (Type 1) 11

@
-
~

- - - a 0000

Bité Bit5

- - OO0 = - 00

- O -2 O =20 =0

Function

Reserved

Nonspecific End of Interrupt Command

No Operation

Specific End of Interrupt Command*

Reserved

Rotate on Nonspecific End of Interrupt Command
Set Priority Command**

Rotate on Specific End of Interrupt Command**

* Bits 0, 1, and 2 are the binary level of the in-service bit to be reset.

** Bits 0, 1, and 2 are the binary level of the lowest priority device.

Figure 11. Operation Command Byte 2 (Bits 7 - 5)

Bits 4, 3

These bits are reserved and must be set to 0.

Bits2-0 These bits define the hardware interrupt level to be acted
upon when bit 6 is set to 1.

- ek - a2 OO0OO0CQ

[+]
=
=
-

- d OO0 = a0

Bit 0

-0 = 0O =0 =0

Function

interrupt Level U
Interrupt Level 1
Interrupt Level 2
Interrupt Level 3
Interrupt Level 4
Interrupt Level 5
Interrupt Level 6
Interrupt Level 7

Figure 12. Operation Command Byte 2 (Bits 2 - 0)

Operation Command Byte 3

This byte is issued to either a master (port hex 0020) or a slave (port

hex 00AO0).
Bit Function
7 Reserved — Must be setto 0.
6,5 Special Mask Mode Bits
4 Reserved — Must be set to 0.

Figure 13 (Part 1 of 2). Operation Command Byte 3

12 Interrupt Controller (Type 1)

Bit Function

3 Reserved — Must be set to 1.
2 Poll Command
1,0 Read Register Command

Figure 13 (Part 2 of 2). Operation Command Byte 3

Bit7 This bit is reserved and must be set to 0.

Bits 6,5 These bits enable the special mask mode, as shown in the
following figure.

Bité Bit5 Function

No Action
No Action
Normal Mask Mode
Special Mask Mode

- -0 0
- O =0

Figure 14. Operation Command Byte 3 (Bits 6 and 5)

Bit4 This bit is reserved and must be set to 0.
Bit3 This bit is reserved and must be set to 1.
Bit 2 When set to 1, this bit sets the Poll command.

Bits 1,0 These bits determine the register to be read on the next
‘read’ pulse, as shown in the following figure.

Bit 1 Bit 0 Function

0 0 No Action

0 1 No Action

1 0 Read Interrupt Request Register
1 1 Read In-Service Register

Figure 15. Operation Command Byte 3 (Bits 1 and 0)

Interrupt Controller (Type 1) 13

Notes:

14 Interrupt Controller (Type 1)

System Timers (Type 1)

Description 1
Channel 0 - System Timer 2
Channel 2 - Tone Generation for Speaker 2
Channel 3 - Watchdog Timer 4
Counters 0,2,and30, 5
Programming the System Timers 5
Counter Write Operations 5
Counter Read Operations 6

Registers 6
Count Register - Channel 0 (Hex0040) 6
Count Register - Channel 2 (Hex0042) 6
Control Byte Register - Channel 0 or 2 (Hex 0043) 7
Count Register - Channel 3 (Hex0044) 9
Control Byte Register - Channel 3 (Hex0047) 9

Counter LatchCommand 10

System TimerModes 11
Mode O - Interrupt on Terminal Count 1
Mode 1 - Hardware Retriggerable One-Shot 12
Mode 2 - Rate Generator 13
Mode 3-SquareWave 13
Mode 4 - Software Retriggerable Strobe 15
Mode 5 - Hardware Retriggerable Strobe 16

Operations CommontoAllModes 17

System Timers (Type 1) i

Figures

—

COX®NOIOO®N =

Counters
Audio Subsystem Block Diagram
System Timer/Counter Registers
Select Counter Bits, Port Hex 0043
Read/Write Counter Bits, Port Hex 0043
Counter Mode Bits, Port Hex 0043
Select Counter, PortHex 0047
Read/Write Counter, Port Hex 0047
Counter LatchCommand
Minimum and Maximum Initial Counts, Counters 0, 2

System Timers (Type 1)

Description

The system has three programmable timers/counters: Channel 0 is
the System Timer, Channel 2 is the Tone Generator for the speaker,
and Channel 3 is the Watchdog Timer. Channel 0 and Channel 2 are
similar to Channel 0 and Channel 2 of the IBM Personal Computer,

IBM Personal Computer XT™, and the IBM Personal Computer AT®.

Channel 3 does not have a counterpart in earlier IBM personal

computer systems. The following is a block diagram of the counters.

CLK + OUT
GATE
Control
Logic
Control
:> Byte
Register

Vi

Count Output
- Register | Latch
7 (CR) :> > (oL)
MSB MSB
Counting
Element
(CE)
Count Output
Register Latch
(CR) (oL)
LSB LSB

Figure 1. Counters

Personal Computer XT is a trademark of the International Business
Machines Corporation.

Personal Computer AT is a registered trademark of the International
Business Machines Corporation.

System Timers (Type 1)

1

Channel 0 - System Timer
e GATE 0 is always enabled.
e CLKINOis driven by a 1.193 MHz signal.
e CLK OUT 0 indirectly drives ‘interrupt request 0’ signal (IRQ 0).

IRQ 0 is driven by a latch that is set by the rising edge of the
‘clock out 0’ signal (CLK OUT 0). The latch may be cleared by a
system reset, an interrupt acknowledge cycle with a vector of hex
08, or an I/0 write to System Control Port B (hex 0061) setting bit
7to1.

Signals derived from CLK OUT 0 are used to gate and clock
Channel 3.

Channel 2 - Tone Generation for Speaker
e GATE 2 is controlled by bit 0 of port hex 0061.
¢ CLKIN 2 is driven by a 1.193 MHz signal.

¢ CLK OUT 2 has two connections. One is to input port hex 0061,
bit 5. CLK OUT 2 is also logically ANDed with port hex 0061, bit 1
(speaker data enable). The output of the AND gate drives the
‘audio sum node’ signal.

2 System Timers (Type 1)

The audio subsystem is a speaker driven by a linear amplifier. The
linear amplifier input node can be driven from the following sources:

¢ System-timer Channel 2 can be enabled to drive the speaker
using bit 1 of 1/0 port hex 0061 set to 1. For information about
system timer Channel 2 see “Description” on page 1.

¢ The channel using the ‘audio sum node’ signal.

The following block diagram shows the audio subsystem.

AUDIO
AUDIO GND —
Typical Driver
1200 ()
ﬂ- Typical Receiver
> 75KQ
Speaker
@
% 00 T
Timer 2
1/0 Port
0061H Bit 1

Figure 2. Audio Subsystem Block Diagram

Each audio driver must have a 1200 ohm source impedance, and a
7.5 kilohm or greater impedance is required for each audio receiver.
Volume control is provided by the driver. Output level is a function of
the number of drivers and receivers that share the AupIO line.

Logic ground is connected to AUDIO GND at the amplifier.

System Timers (Type 1) 3

Channel 3 - Watchdog Timer

This channel operates only in Mode 0, and counts in 8-bit binary.
¢ GATE 3 is tied to IRQ 0.
* CLKIN 3 is tied to CLK OUT 0 inverted.
e CLK OUT 3, when high, drives the NMI active.

The Watchdog Timer detects when IRQ 0 is active for more than one
period of CLK OUT 0. If IRQ 0 is active when a rising edge of CLK
OUT 0 occurs, the count is decremented. When the count is
decremented to 0, an NMI is generated. Thus, the Watchdog Timer
can be used to detect when IRQ 0 is not being serviced. This is useful
for detecting error conditions.

BIOS interfaces are provided to enable and disable the Watchdog
Timer. When the Watchdog Timer times out, it causes an NMI and
sets System Control Port A (hex 0092), bit 4 to 1. This bit may be set
to 0 by using the BIOS interface to disable the Watchdog Timer.

Note: The NMI stops all arbitration on the bus until bit 6 of the
Arbitration register (I/0 address hex 0090) is set to 0. This can
result in lost data or an overrun error on some I/O devices.

If the Watchdog Timer is used to detect “tight looping” software
tasks that inhibit interrupts, some I/0 devices may be overrun
(not serviced in time). The operating system may be required
to restart these devices.

When the Watchdog Timer is enabled, the ‘inhibit’ signal (INHIBIT) is
active only when IRQ 0 is pending for longer than one period of CLK
OUT 0. When INHIBIT is active, any data written to Channel 0 or
Channel 3 is ignored. INHIBIT is never active if the Watchdog Timer is
disabled.

The Watchdog Timer operation is defined only when Channel 0 is
programmed in Mode 2 or Mode 3. The operation of the Watchdog
Timer is undefined when Channel 0 is programmed in any other
mode.

4 System Timers (Type 1)

Counters 0, 2, and 3

Each counter is independent. Counters 0 and 2 are 16-bit down
counters that can be preset. They can count in binary or binary
coded decimal (BCD). Counter 3 is an 8-bit down counter that can be
preset. It counts in binary only.

Programming the System Timers

The system treats the programmable interval timer as an
arrangement of five external I/0 ports. Three ports are treated as
count registers and two are control registers for mode programming.
Counters are programmed by writing a control word and then an
initial count. All control words are written into the Control Word
registers, which are located at address hex 0043 for counters 0 and 2,
and address hex 0047 for counter 3. Initial counts are written into the
Count registers, not the Control Byte registers. The format of the
initial count is determined by the control word used.

After the initial count is written to the Count register, it is transferred
to the counting element, according to the mode definition. When the
count is read, the data is presented by the output latch.

Counter Write Operations

The control word must be written before the initial count, and the
count must follow the count format specified in the control word.

A new initial count may be written to the counters at any time without
affecting the counter’s programmed mode. Counting is affected as
described in the mode definitions. The new count must follow the
programmed count format.

System Timers (Type 1) 5

Counter Read Operations

The counters can be read using the Counter Latch command (see
“Counter Latch Command” on page 10).

If the counter is programmed for two-byte counts, two bytes must be
read. The two bytes need not be read consecutively; read, write, or
programming operations of other counters may be inserted between
them.

Note: If the counters are programmed to read or write two-byte
counts, the program must not transfer control between writing
the first and second byte to another routine that also reads or
writes into the same counter. This will cause an incorrect

count.

Registers
1/O Address
(Hex) Register
0040 Count Register - Channel 0 (Read/Write)
0042 Count Register - Channel 2 (Read/Write)
0043 Control Byte Register - Channel 0 or 3 (Write)
0044 Count Register - Channel 3 (Read/Write)
0047 Control Byte Register - Channel 3 (Write)

Figure 3. System Timer/Counter Registers
Count Register - Channel 0 (Hex 0040)

The control byte is written to port hex 0043 indicating the format of the
count (least-significant byte only, most-significant byte only, or
least-significant byte followed by most-significant byte). This must be
done before writing the count to port hex 0040.

Count Register - Channel 2 (Hex 0042)

The control byte is written to port hex 0043 indicating the format of the
count (least-significant byte only, most-significant byte only, or
least-significant byte followed by most-significant byte). This must be
done before writing the count to port hex 0042.

6 System Timers (Type 1)

Control Byte Register - Channel 0 or 2 (Hex 0043)

This is a write-only register. The following gives the format for the
control byte (port hex 0043) for counters 0 and 2.

Bits 7,6 These bits select Counter 0 or 2.

Bits

76 Function

00 Select Counter 0
01 Reserved

10 Select Counter 2
11 Reserved

Figure 4. Select Counter Bits, Port Hex 0043

Bits 5,4 These bits distinguish a counter latch command from a
control byte. If a control byte is selected, these bits also
determine the method in which each byte is read or

written.
Bits
54 Function
00 Counter Latch Command
01 Read/Write Counter bits 0 - 7 only
10 Read/Write Counter bits 8 - 15 only
11 Read/Write Counter bits 0 - 7 first, then bits 8 - 15

Figure 5. Read/Write Counter Bits, Port Hex 0043

System Timers (Type 1)

7

Bits 3 -1 These bits select the mode.

Bits

321 Function

000 Mode 0 - Interrupt on Terminal Count

001 Mode 1 - Hardware Retriggerable One Shot

X10 Mode 2 - Rate Generator

X11 Mode 3 - Square Wave

100 Mode 4 - Software Retriggerable Strobe

101 Mode 5 - Hardware Retriggerable Strobe
Don‘t care bits (X) should be set to 0.

Figure 6. Counter Mode Bits, Port Hex 0043
Bit 0 When set to 1, this bit selects the binary coded decimal

method of counting. When set to 0, it selects the 16-bit
binary method.

8 System Timers (Type 1)

Count Register - Channel 3 (Hex 0044)

The control byte is written to port hex 0047 indicating the format of the
count (least-significant byte only). This must be done before writing
the count to port hex 0044.

Control Byte Register - Channel 3 (Hex 0047)

This is a write-only register. The following gives the format for the
control byte (port hex 0047) for counter 3.

Bits 7,6 These bits select Counter 3.

Bits

76 Function

00 Select Counter 3
01 Reserved

10 Reserved

11 Reserved

Figure 7. Select Counter, Port Hex 0047

Bits 5,4 These bits distinguish a counter latch command from a

control byte.
Bits
54 Function
00 Counter Latch Command Select Counter 0
01 R/W Counter Bits 0 - 7 Only
10 Reserved
11 Reserved

Figure 8. Read/Write Counter, Port Hex 0047

Bits 3-0 These bits are reserved and must be written as 0.

System Timers (Type 1) 9

Counter Latch Command

The Counter Latch command is written to the Control Byte register.
Bits 7 and 6 select the counter, and bits 5 and 4 distinguish this
command from a control byte. The following figure shows the format
of the Counter Latch command.

Bit Function

7,6 Specifies the counter to be latched

5,4 00 Specifies the Counter Latch command
3-0 Reserved = 0

Figure 9. Counter Latch Command

The count is latched into the selected counter’s output latch when the
Counter Latch command is received. This count is held in the latch
until it is read by the system microprocessor (or until the counter is
reprogrammed). After the count is read by the system
microprocessor, it is automatically unlatched, and the output latch
returns to following the counting element. Counter Latch commands
do not affect the programmed mode of the counter in any way. All
subsequent latch commands issued to a given counter before the
count is read, are ignored. A read cycle to the counter latch returns
the value latched by the first Counter Latch command.

10 System Timers (Type 1)

System Timer Modes

The following definitions are used when describing the timer modes.

CLK pulse A rising edge, then a falling edge on the counter
CLK input.
Trigger A rising edge on a counter’s input GATE.

Counter Load The transfer of a count from the Counter register to
the counting element.

Mode 0 - Interrupt on Terminal Count

Event counting can be done using Mode 0. Counting is enabled when
GATE is equal to 1, and disabled when GATE is equal to 0. If GATE is
equal to 1 when the control byte and initial count are written to the
counter, the sequence is as follows:

1. The control byte is written to the counter, and OUT goes low.
2. The initial count is written.

3. Initial count is loaded on the next CLK pulse. The count is not
decremented for this CLK pulse.

The count is decremented until the counter reaches 0. For an
initial count of N, the counter reaches 0 after N+ 1 CLK pulses.

4. OUT goes high.

OUT remains high until a new count or new Mode 0 control byte is
written into the counter.

If GATE equals 0 when an initial count is written to the counter, it is

loaded on the next CLK pulse even though counting is not enabled.
After GATE enables counting, OUT goes high N CLK pulses later.

System Timers (Type 1) 11

If a new count is written to a counter while counting, it is loaded on
the next CLK pulse. Counting then continues from the new count. If a
2-byte count is written to the counter the following occurs:

1. The first byte written to the counter disables the counting. OUT
goes low immediately, and there is no delay for the CLK puise.

2. When the second byte is written to the counter, the new count is
loaded on the next CLK pulse. OUT goes high when the counter
reaches 0.

Mode 1 - Hardware Retriggerable One-Shot

The sequence for Mode 1 is as follows:
1. OUT is high.

2. On the CLK pulse following a trigger, OUT goes low and begins
the one-shot pulse.

3. When the counter reaches zero, OUT goes high.
OUT remains high until the CLK pulse following the next trigger.

The counter is armed by writing the control byte and initial count to
the counter. When a trigger occurs, the counter is loaded. OUT goes
low on the next CLK pulse, starting the one-shot pulse. For an initial
count of N, a one-shot pulse is N CLK pulses long. The one-shot
pulse repeats the count of N for the next triggers. OUT remains low N
CLK pulses following any trigger. GATE does not affect OUT. The
current one-shot pulse is not affected by a new count written to the
counter, unless the counter is retriggered. If the counter is
retriggered, the new count is loaded and the one-shot pulse
continues.

Note: Mode 1 is valid only for Counter 2.

12 System Timers (Type 1)

Mode 2 - Rate Generator

This mode causes the counter to perform a divide-by-N function.
Counting is enabled when GATE equals 1, and disabled when GATE
equals 0.
The sequence for Mode 2 is as follows:
1. OUT is high.
The initial count decrements to 1.
OUT goes low for one CLK pulse.
OUT goes high.

The counter reloads the initial count.

o o &> 0 bh

The process is repeated.

If GATE goes low during the OUT pulse, OUT goes high. On the next
CLK pulse a trigger reloads the counter with the initial count. OUT
goes low N CLK pulses after the trigger. This allows the GATE input
to be used to synchronize the counter.

The counter is loaded on the CLK pulse after a control byte and initial
count are written to the counter. OUT goes low N CLK pulses after
writing the initial count. This allows software to synchronize the
counter.

The current counting sequence is not affected by a new count being
written to the counter. If the counter receives a trigger after a new
count is written and before the end of the current count, the new
count is loaded on the next CLK pulse, and counting continues from
the new count. Iif the trigger is not received by the counter, the new
count is loaded following the current counting cycle.

Mode 3 - Square Wave

Mode 3 is similar to Mode 2 except for the duty cycle of OUT.
Counting is enabled when GATE is equal to 1, and disabled when
GATE is equal to 0. An initial count of N results in a square wave on
OUT. The period of the square wave is N CLK pulses. If OUT is low
and GATE goes low, OUT goes high. On the next CLK pulse, a trigger
reloads the counter with the initial count.

System Timers (Type 1) 13

The counter is loaded on the CLK pulse following the writing of a
control byte and the initial count.

The current counting sequence is not affected by a new count being
written to the counter. If the counter receives a trigger after a new
count is written, and before the end of the current count’s half-cycle of
the square wave, the new count is loaded on the next CLK pulse, and
counting continues from the new count. If the trigger is not received
by the counter, the new count is loaded following the current
half-cycle.

The way Mode 3 is implemented depends on whether the count
written is odd or even. If the count is even, OUT begins high and the
following applies:

1. The initial count is loaded on the first CLK pulse.
. The count is decremented by 2 on succeeding CLK pulses.
. The count decrements to 0.

2

3

4. OUT changes state.

5. The counter is reloaded with the initial count.
6

. The process repeats indefinitely.

If the count is odd, the following applies:

OUT is high.

The initial count minus 1 is loaded on the first CLK pulse.
The count is decremented by 2 on succeeding CLK puilses.
The count decrements to 0.

One CLK pulse after the count reaches 0, OUT goes low.
The counter is reloaded with the initial count minus 1.
Succeeding CLK pulses decrements the count by 2.

The count decrements to 0.

OUT goes high.

© ® N o o > ® b =

—h
©

The counter is reloaded with the initial count minus 1.

—h
—

. The process repeats indefinitely.

14 System Timers (Type 1)

Mode 3, using an odd count, causes OUT to go high for a count of
(N+1)/2 and low for a count of (N-1)/2.

Mode 3 may operate such that OUT is initially set low when the
control byte is written. For this condition, Mode 3 operates as
follows:

OUT is low.

The count decrements to half of the initial count.
OUT goes high.

The count decrements to 0.

OUT goes low.

o o s 0 Dh o=

The process repeats indefinitely.

This process results in a square wave with a period of N CLK pulses.

Note: If OUT needs to be high after the control byte is written, the
control byte must be written twice. This applies only to Mode
3.

Mode 4 - Software Retriggerable Strobe

Counting is enabled when GATE equals 1, and disabled when GATE
equals 0. Counting begins when an initial count is written.
The sequence for Mode 4 is as follows:

1. OUT is high.

2. The control byte and initial count are written to the counter.

3. The initial count is loaded on the next CLK pulse. The count is
not decremented for this clock pulse.

4. The count is decremented to 0. For an initial count of N, the
counter reaches 0 after N+ 1 CLK pulses.

5. OUT goes low for one CLK pulse.
6. OUT goes high.

GATE should not go low one-half CLK pulse before or after OUT goes
low. If this occurs, OUT remains low until GATE goes high.

System Timers (Type 1) 15

If a new count is written to a counter while counting, it is loaded on
the next CLK pulse. Counting then continues from the new count. If a
2-byte count is written, the following occurs:

1. Writing the first byte does not affect counting.
2. The new count is loaded on the CLK pulse following the writing of
the second byte.

The Mode 4 sequence can be retriggered by software. The period
from when the new count of N is written to when OUT strobes low is
(N+1) pulses.

Mode 5 - Hardware Retriggerable Strobe

The sequence for Mode 5 is as follows:

1. OUT is high.

2. The control byte and initial count are written to the counter.
3. Counting is triggered by a rising edge of GATE.
4

. The counter is loaded on the CLK pulse following the trigger.
This CLK pulse does not decrement the count.

o

The count decrement to 0.

6. OUT goes low for one CLK pulse. This occurs (N+ 1) CLK pulses
after the trigger.

7. OUT goes high.

The counting sequence can be retriggered. OUT strobes low (N+ 1)
pulses after the trigger. GATE does not affect OUT.

The current counting sequence is not affected by a new count being
written to the counter. If the counter receives a trigger after a new
count is written and before the end of the current count, the new

- count is loaded on the next CLK pulse, and counting continues from
the new count.

Note: Mode 5 is valid only on Counter 2.

16 System Timers (Type 1)

Operations Common to All Modes

Control bytes written to a counter cause all control logic to reset.
OUT goes to a known state. This does not take a CLK pulse.

The falling edge of the CLK pulse occurs when new counts are loaded
and counters are decremented.

Counters do not stop when they reach zero. In Modes 0, 1, 4, and 5
the counter wraps to the highest count, and continues counting.
Modes 2 and 3 are periodic; the counter reloads itself with the initial
count and continues from there.

The GATE is sampled on the rising edge of the CLK pulse.

The following shows the minimum and maximum initial counts for the
counters.

Minimum Maximum

Mode Count Count

0 1 0 = 2!$ (Binary Counting) or 10* (BCD Counting)
1 1 0 = 26 (Binary Counting) or 10* (BCD Counting)
2 2 = 2!6 (Binary Counting) or 10 (BCD Counting)
3 2 0 = 216 (Binary Counting) or 10* (BCD Counting)
4 1 0 = 216 (Binary Counting) or 10* (BCD Counting)
5 1 0 = 216 (Binary Counting) or 10* (BCD Counting)

Figure 10. Minimum and Maximum Initial Counts, Counters 0, 2

Counter 3 can use only Mode 0, Interrupt on Terminal Count. The
minimum initial count is 1 and the maximum is hex FF.

System Timers (Type 1) 17

Notes:

18 System Timers (Type 1)

Diskette Drive Controller (Type 1)

Description
Diskette Drive Controller Registers
Status Register A(HexO03F0)
Status Register B (Hex03F1)
Digital Output Register (Hex03F2)
Digital Input Register (Hex 03F7 -Read)
Configuration Control Register (Hex 03F7 - Write) . .

Diskette Drive Controller Status Register (Hex 03F4)

Data Register (Hex03F5)

Diskette Drive Controller Programming Considerations

ControllerCommands
Read DataCommand
Read Deleted Data Command
ReadaTrackCommand
ReadIDCommand
Write Data Command
Write Deleted Data Command
Formata Track Command
Scan EqualCommand
Scan Low or Equal Command
Scan High or Equal Command
Recalibrate Command
Sense Interrupt Status Command
SpecifyCommand
Sense Drive Status Command
SeekCommand
Invalid Command Status

Command Status Registers
Status Register0
Status Register1
Status Register2
Status Register3

Signal Descriptions

OutputSignals

InputSignals

Power Sequencing

connector

Diskette Drive Controller (Type 1)

Figures

—h
COPNIOPILN =

WWWWWWHRWWENNNNNONONNNN = ==tk
©CONOIOTRAINLOOINDIORLONA2OOI®NDORAON =

Status Register A(HexO03F0) 2
Status Register B (HexO03F1) 3
Digital Output Register (Hex03F2) 3
Digital Input Register (Hex 03F7 -Read) 4
Configuration Control Register (Hex 03F7 - Write) 4
DataRate Selection 4
Diskette Drive Controller Status Register (Hex 03F4) 5
Command Symbols, Diskette Drive Controller 8
Read DataCommand 9
ReadDataResult 9
Read Deleted DataCommand 10
Read Deleted DataResult 10
ReadaTrackCommand 11
ReadaTrackResult 11
ReadIDCommand 12
ReadIDResult 12
Write DataCommand 13
WriteDataResult 13
Write Deleted DataCommand 14
Write Deleted DataResult 14
Formata TrackCommand 15
FormataTrackResult 15
ScanEqualCommand 16
ScanEqualResult 16
ScanLoworEqualCommand 17
ScanlLoworEqualResult 17
Scan High or Equal Command 18
Scan Highor EqualResult 18
Recalibrate Command 19
Sense Interrupt Status Command 19
Sense Interrupt Status Result 19
SpecifyCommand 20
Sense Drive StatusCommand 20
Sense Drive StatusResult 20
SeekCommand, 21
Invalid CommandResult 21
Status Register0 22
Status Register0 (Bits 7,6) 22
Status Register1 L. 23

Diskette Drive Controller (Type 1)

40. Status Register2 o 24
41. StatusRegister3 25
42. Diskette Drive Connector Voltage and Signal Assignments 29

Diskette Drive Controller (Type 1) il

Notes:

lv Diskette Drive Controller (Type 1)

Description

The diskette drive controller and connector reside on the system
board. The diskette drive controller supports:

¢ Two drives
¢ 1MB unformatted media, 720KB formatted
(MB equals 1,048,576 bytes; KB equals 1024 bytes)
¢ 2MB unformatted media, 1.44MB formatted
e 250,000 bits-per-second mode
* 500,000 bits-per-second mode.

Precompensation of 125 nanoseconds is provided for all tracks.

The controller supports both high- and low-density media. The 720KB
and 1.44MB formatted diskette densities are supported for single and
multithread operations.

Warning: 32-bit operations to the video subsystem can cause a
diskette overrun in the 1.44MB mode because data width conversions
may require more than 12 microseconds. If an overrun occurs and
BIOS returns an error code, retry the operation.

When the diskette drive controller is switched from one density to
another, the following occurs:

* The clock rate changes:
— 8 MHz for high density
— 4 MHz for low density
¢ The programmed step rate changes
¢ Write current changes (reduced write current is used in the
high-density mode)
* Number of sectors per track changes:
— 18 sectors per track in the high-density mode
— 9 sectors per track in the low-density mode

Warning: The controller does not check to see that the media

supports the density selected. TMB media can not be reliably
formatted to the 2MB density. Loss of data can resulit.

Diskette Drive Controller (Type 1) 1

Diskette Drive Controller Registers

Three registers indicate the status of signals used in diskette
operations; two registers control certain interface signals. The
Diskette Drive Controller Status register and the Data register are
also accessed by the system.

Status Register A (Hex 03F0)

This read-only register shows the status of signals on the diskette
drive interface. For additional information about signals on the
diskette drive interface see “Signal Descriptions” on page 26.

Function

Interrupt Pending
-2nd Drive Installed
Step

-Track 0

Head 1 Select
-index

-Write Protect
Direction

O=NNWhLHoN

Figure 1. Status Register A (Hex 03F0)

2 Diskette Drive Controller (Type 1)

Status Register B (Hex 03F1)

This read-only register shows the status of signals on the diskette
drive interface. For additional information about signals on the
diskette drive interface see “Signal Descriptions” on page 26.

Bit Function

7,6 Reserved

5 Drive Select

4 Write Data— Set to 1 by a positive transition of the ‘-Write
Data’ signal.

3 Read Data — Set to 1 by a positive transition of the ‘-Read
Data’ signal.

2 Write Enable

1 Motor Enable 1

0 Motor Enable 0

Figure 2. Status Register B (Hex 03F1)
Digital Output Register (Hex 03F2)

This write-only register controls drive motors, drive selection, and
feature enable. All bits are set to 0 by a reset.

Bit Function

7,6 Reserved

5 Motor Enable 1

4 Motor Enable 0

3 Reserved

2 Diskette Controller Reset

1 Reserved

0 Drive Select (0 = Drive 0; 1 = Drive 1)

Figure 3. Digital Output Register (Hex 03F2)

Diskette Drive Controller (Type 1)

Digital Input Register (Hex 03F7 - Read)

This read-only register senses the state of the ‘-diskette change’ and
‘~high density select’ signals on the diskette drive interface. For
additional information about these signals see “Signal Descriptions”
on page 26.

Bit Function

7 Diskette Change
6-1 Reserved

0 -High Density Select

Figure 4. Digital Input Register (Hex 03F7 - Read)
Configuration Control Register (Hex 03F7 - Write)

This write-only register sets the transfer rate.

Bit Function
7-2 Reserved
1,0 Data Rate Select

Figure 5. Configuration Control Register (Hex 03F7 - Write)

Bits 7-2 Reserved.

Bits 1,0 These bits select the data rate as shown in the following

figure.
Bits
10 Data Rate
00 500,000-bits per second mode
01 Reserved
10 250,000-bits per second mode
11 Reserved

Figure 6. Data Rate Selection

4 Diskette Drive Controller (Type 1)

Diskette Drive Controller Status Register (Hex 03F4)

This read-only register facilitates the transfer of data between the
system microprocessor and the controller.

Bit Function

Request for Master
Data Input/Output
Non-DMA Mode
Diskette Controller Busy
Reserved

Reserved

Drive 1 Busy

Drive 0 Busy

O=NWArOON

Figure 7. Diskette Drive Controller Status Register (Hex 03F4)

Bit7 When this bit is set to 1, the Data register is ready to
transfer data with the system microprocessor.

Bit6 This bit indicates the direction of data transfer between
the diskette drive controller and the system
microprocessor. If this bit is set to 1, the transfer is to the
system microprocessor; if this bit is set to 0, the transfer is
to the controller.

Bit5 When this bit is set to 1, the controller is in the non-DMA
mode.
Bit4 When this bit is set to 1, a Read or Write command is

being executed.

Bits 3,2 These bits are reserved.

Bit1 When this bit is set to 1, diskette drive 1 is in the seek
mode.

Bit0 When this bit is set to 1, diskette drive 0 is in the seek
mode.

Data Register (Hex 03F5)

This read/write register passes data, commands, and parameters,
and provides diskette-drive status information.

Diskette Drive Controller (Type 1) §

Diskette Drive Controller Programming
Considerations

Each command is initiated by a multibyte transfer from the system
microprocessor; the result can be a multibyte transfer back to the
system microprocessor. Each command consists of three phases:

e Command Phase: The system microprocessor writes a series of
command bytes to the controller directing it to perform a specific
operation.

e Execution Phase: The controller performs the specified
operation.

* Result Phase: After the operation is complete, status information
is available to the system microprocessor through a sequence of
read commands.

6 Diskette Drive Controller (Type 1)

Controller Commands

The following is a list of the commands issued to the diskette drive
controller:

Read Data command

Read Deleted Data command
Read a Track command

Read ID command

Write Data command

Write Deleted Data command
¢ Format a Track command
Scan Equal command

Scan Low or Equal command
Scan High or Equal command
Recalibrate command

Sense Interrupt Status command
Specify command

Sense Drive Status command
Seek command.

Notes:

1. Bits 6 and 7 in Status Register 0 are used to indicate command
status. When an invalid command is processed, this information
is returned to the system microprocessor in the Invalid Command
Status byte.

2. Diskette BIOS may not support all commands listed. Whenever
possible, the diskette hardware should be accessed through the
diskette BIOS.

Diskette Drive Controller (Type 1) 7

The following symbols are used in the figures showing the format of
individual commands. The command formats start on page 9.

Symbol
HD

HLT

HUT

MF

MT

ND

PTN

SK

SRT

us

Name
Head

Head Load Time

Head Unload
Time

FM or MFM
Mode
Multitrack

Non-DMA Mode

Present Track
Number

Skip

Step Rate

Unit Select

Description
The selected head number is 0 or 1.

HLT is the head load time in the selected
drive (2 to 254 milliseconds in
2-millisecond increments).

HUT is the head unload time after a Read
or Write operation (16 to 240 milliseconds
in 16-millisecond increments).

0 selects FM mode and 1 selects MFM.

1 selects multitrack operation. (Head 0
and head 1 will be read or written.)

ND indicates an operation in the
non-DMA mode.

PTN is the track number at the
completion of a Sense Interrupt
Status command (present position
of the head).

SK stands for skip deleted-data
address mark.

SRT is the stepping rate for the
diskette drive (1 to 16 milliseconds
in 1-millisecond increments).

Indicates the drive number selected. 0
selects drive 0; 1 selects drive 1.

Figure 8. Command Symbols, Diskette Drive Controller

8 Diskette Drive Controller (Type 1)

The following commands are issued to the controller by the system.
An X in the figures indicates that the bit can be either 0 or 1.

Read Data Command

Command Phase

Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Byte 8

7 6 5 4 3 2

MT MF SK 0 0 1

X X X X X HD

Track Number

Head Address

Sector Number

Number of Data Bytes in Sector
End-of-Track

Gap Length

Data Length

-
(-]

o -

us

Figure 9. Read Data Command

Result Phase
Byte 0 Status Register 0
Byte 1 Status Register 1
Byte 2 Status Register 2
Byte 3 Track Number
Byte 4 Head Address
Byte 5§ Sector Number
Byte 6 Number of Data Bytes in Sector

Figure 10. Read Data Result

Diskette Drive Controller (Type 1)

Read Deleted Data Command

Command Phase

7 6 5 4 3 2

Byte 0 MT MF SK 0 1 1
Byte 1 X X X X X HD
Byte 2 Track Number

Byte 3 Head Address

Byte 4 Sector Number

Byte 5 Number of Data Bytes in Sector
Byte 6 End-of-Track

Byte 7 Gap Length

Byte 8 Data Length

Figure 11. Read Deleted Data Command

Result Phase

Byte 0 Status Register 0

Byte 1 Status Register 1

Byte 2 Status Register 2

Byte 3 Track Number

Byte 4 Head Address

Byte 5 Sector Number

Byte 6 Number of Data Bytes in Sector

Figure 12. Read Deleted Data Result

10 Diskette Drive Controller (Type 1)

Read a Track Command

Command Phase

Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5§
Byte 6
Byte 7
Byte 8

7 6 5 4 3 2

0 MF SK 0 0 0
X X X X X HD
Track Number

Head Address

Sector Number

Number of Data Bytes in Sector
End-of-Track

Gap Length

Data Length

Figure 13. Read a Track Command

Result Phase
Byte 0 Status Register 0
Byte 1 Status Register 1
Byte 2 Status Register 2
Byte 3 Track Number
Byte 4 Head Address
Byte § Sector Number
Byte 6 Number of Data Bytes in Sector

Figure 14. Read a Track Result

Diskette Drive Controller (Type 1)

11

Read ID Command

Command Phase

Byte 0 0 MF 0 0 1 0
Byte 1 X X X X X HD

-h

O -

us

Figure 15. Read ID Command

Result Phase

Byte 0 Status Register 0

Byte 1 Status Register 1

Byte 2 Status Register 2

Byte 3 Track Number

Byte 4 Head Address

Byte 5 Sector Number

Byte 6 Number of Data Bytes in Sector

Figure 16. Read ID Result

12 Diskette Drive Controller (Type 1)

Write Data Command

Command Phase

Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Byte 8

7 6 5 4 3 2

MT MF 0 0 0 1

X X X X X HD

Track Number

Head Address

Sector Number

Number of Data Bytes in Sector
End-of-Track

Gap Length

Data Length

Figure 17. Write Data Command

Result Phase
Byte 0 Status Register 0
Byte 1 Status Register 1
Byte 2 Status Register 2
Byte 3 Track Number
Byte 4 Head Address
Byte § Sector Number
Byte 6 Number of Data Bytes in Sector

Figure 18. Write Data Result

Diskette Drive Controller (Type 1)

13

Write Deleted Data Command

Command Phase

7 6 5 4 3 2

Byte 0 MT MF 0 0 1 0
Byte 1 X X X X X HD
Byte 2 Track Number

Byte 3 Head Address

Byte 4 Sector Number

Byte 5 Number of Data Bytes in Sector
Byte 6 End-of-Track

Byte 7 Gap Length

Byte 8 Data Length

Figure 19. Write Deleted Data Command

Result Phase

Byte 0 Status Register 0

Byte 1 Status Register 1

Byte 2 Status Register 2

Byte 3 Track Number

Byte 4 Head Address

Byte 5 Sector Number

Byte 6 Number of Data Bytes in Sector

Figure 20. Write Deleted Data Result

14 Diskette Drive Controller (Type 1)

Format a Track Command

Command Phase

Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5

7 6 5 4 3 2

0 MF 0 0 1 1

1

0

X X X X X HD 0

Number of Data Bytes in Sector
Sectors per Track

Gap Length

Data

us

Figure 21. Format a Track Command

Result Phase
Byte 0 Status Register 0
Byte 1 Status Register 1
Byte 2 Status Register 2
Byte 3 Track Number
Byte 4 Head Address
Byte 5 Sector Number
Byte 6 Number of Data Bytes in Sector

Figure 22. Format a Track Result

Diskette Drive Controller (Type 1)

15

Scan Equal Command

Command Phase

Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Byte 8

7 6 5 4 3 2

MT MF SK 1 0 0
X X X X X HD
Track Number

Head Address

Sector Number

Number of Data Bytes in Sector
End-of-Track

Gap Length

Scan Test

Figure 23. Scan Equal Command

Result Phase
Byte 0 Status Register 0
Byte 1 Status Register 1
Byte 2 Status Register 2
Byte 3 Track Number
Byte 4 Head Address
Byte 5 Sector Number
Byte 6 Number of Data Bytes in Sector

Figure 24. Scan Equal Result

16 Diskette Drive Controller (Type 1)

Scan Low or Equal Command

Command Phase

7 6 5 4 3 2 1 0

Byte 0 MT MF SK 1 1 0 0 1
Byte 1 X X X X X HD ©0 us
Byte 2 Track Number

Byte 3 Head Address

Byte 4 Sector Number

Byte § Number of Data Bytes in Sector

Byte 6 End-of-Track

Byte 7 Gap Length

Byte 8 Scan Test

Figure 25. Scan Low or Equal Command

Result Phase

Byte 0 Status Register 0

Byte 1 Status Register 1

Byte 2 Status Register 2

Byte 3 Track Number

Byte 4 Head Address

Byte § Sector Number

Byte 6 Number of Data Bytes in Sector

Figure 26. Scan Low or Equal Result

Diskette Drive Controller (Type 1)

Scan High or Equal Command

Command Phase

7 6 5 4 3 2

Byte 0 MT MF SK 1 1 1
Byte 1 X X X X X HD
Byte 2 Track Number

Byte 3 Head Address

Byte 4 Sector Number

Byte 5 Number of Data Bytes in Sector
Byte 6 End-of-Track

Byte 7 Gap Length

Byte8 Scan Test

Figure 27. Scan High or Equal Command

Result Phase

Byte 0 Status Register 0

Byte 1 Status Register 1

Byte 2 Status Register 2

Byte 3 Track Number

Byte 4 Head Address

Byte 5 Sector Number

Byte 6 Number of Data Bytes in Sector

Figure 28. Scan High or Equal Result

18 Diskette Drive Controller (Type 1)

Recalibrate Command

Command Phase

7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 1 1 1
Byte 1 X X X X X 0 0 us

Figure 29. Recalibrate Command
Result Phase: This command has no result phase.
Sense Interrupt Status Command

Command Phase

Byte 0 0 0 0 0 1 0 0 0

Figure 30. Sense Interrupt Status Command

Result Phase

Byte 0 Status Register 0
Byte 1 Present Track Number

Figure 31. Sense Interrupt Status Result

Diskette Drive Controller (Type 1)

19

Specify Command

Command Phase

7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 0 1 1
Byte 1 SRT SRT SRT SRT HUT HUT HUT HUT
Byte 2 HLT HLT HLT HLT HLT HLT HLT ND

Figure 32. Specify Command
Result Phase: This command has no result phase.
Sense Drive Status Command

Command Phase

Byte 0 0 0 0 0 0 1 0 0
Byte 1 X X X X X HD 0 us

Figure 33. Sense Drive Status Command

Result Phase

Byte 0 Status Register 3

Figure 34. Sense Drive Status Result

20 Diskette Drive Controller (Type 1)

Seek Command

Command Phase

7 6 5 4 3 2 1 0

Byte0 0 0 0 0 1 1 1 1
Byte 1 X X X X X HD O us
Byte 2 New Track Number for Seek

Figure 35. Seek Command
Result Phase: This command has no result phase.
Invalid Command Status

Result Phase: The following status byte is returned to the system
microprocessor when an invalid command has been received.

Byte 0 Status Register 0

Figure 36. Invalid Command Result

Diskette Drive Controller (Type 1) 21

Command Status Registers

This section provides definitions for status registers 0 through 3.

Status Register 0

o

O = NWhLoN

Function

Interrupt Code

Seek End

Equipment Check

Not Ready

Head Address

Reserved = 0

Unit Select (0 = Drive 0; 1 = Drive 1)

Figure 37. Status Register 0

Bits 7,6 These bits indicate the command interrupt status.
Bits
76 Function
00 Normal Termination of Command
01 Abnormal Termination of Command
10 Invalid Command Issued
11 Reserved

Figure 38. Status Register 0 (Bits 7, 6)

Bit5

Bit 4

Bit3

Bit 2

Bit1

This bit is set to 1 when the diskette drive completes the
Seek command.

This bit is set to 1 if the ‘-track 0’ signal fails to occur after
the Recalibrate command is issued.

This bit is set to 1 when the diskette drive is in the
not-ready state and a Read or Write command is issued.
This bit is also set to 1 if a Read or Write command is
issued to head 1 of a single-sided diskette drive.

This bit indicates the state of the ‘-head select’ signal after
the command was performed. When set to 1, head 1 was
selected; when set to 0, head 0 was selected.

Reserved. This bit must be set to 0.

22 Diskette Drive Controller (Type 1)

Bit0 When is set to 1, this bit indicates the command was
issued to drive 1. When set to 0, this bit indicates the
command was issued to drive 0.

Status Register 1

Bit Function

End-of-Track
Reserved = 0

Data Error

Overrun

Reserved = 0

No Data

Not Writable

Missing Address Mark

C=NWHdPOOO®N

Figure 39. Status Register 1

Bit7 This bit is set to 1 when the controller tries to gain access
to a sector beyond the final sector of a track.

Bit6 Reserved.

Bit5 This bit is set to 1 when a CRC error is detected in the ID
or data field.

Bit4 This bit is set to 1 if the system does not service the
diskette drive controller within 12 microseconds during
data transfers.

Bit3 Reserved. This bit is always set to 0.

Bit 2 This bit is set to 1 when:

¢ The controller cannot find the sector specified in the
ID register during the execution of a Read Data, Write
Deleted Data, or Scan command

* The controller cannot read the ID field without an error
during the execution of a Read ID command

* The starting sector cannot be found during the
execution of a Read Track command.

Bit 1 This bit is set to 1 when the ‘-write-protect’ signal is active
during a Write Data, Write Deleted Data, or Format Track
command.

Diskette Drive Controller (Type 1) 23

Bit0 This bit is set to 1 if the controller cannot detect an
address mark. When this occurs, bit 0 of Status Register 2
indicates whether the missing address mark is an
ID-address mark or a data-address mark.

Status Register 2

Function

Reserved = 0

Control Mark

Data Error in Data Field

Wrong Track

Scan Equal Hit

Scan Not Satisfied

Bad Track

Missing Address Mark in Data Field

O =NWHOOON

Figure 40. Status Register 2

Bit7 Reserved. This bit is always set to 0.

Bit 6 This bit is set to 1 when the controller encounters a sector
that has a deleted data-address mark during a Read Data
or Scan command.

Bit5 This bit is set to 1 if the controller detects an error in the
data.
Bit 4 This bit is set to 1 when the track number on the media is

different from the track number issued by the command.
When this occurs, bit 2 of Status register 1 is also set to 1.

‘Bit3 This bit is set to 1 if the contiguous sector data is the same
as the data supplied by the system during the execution of
a Scan command.

Bit 2 This bit is set to 1 if the contiguous sector data is not the
same as the data supplied by the system during the
execution of a Scan command.

Bit 1 This bit is set to 1 when the track number on the media is
hex FF and the track number value stored in the ID
register is not hex FF. When this occurs, bit 2 of Status
register 1 is also set to 1.

24 Diskette Drive Controller (Type 1)

This bit is set to 1 when the controller cannot find a
data-address mark. This bit is set to 0 when an
ID-address mark cannot be found. Bit 0 in Status Register
0 is also set if either address mark cannot be found.

Status Register 3

SNwAOON

0

Function

Reserved
Write Protect
Reserved
Track 0
Reserved
Head Address
Reserved

Figure 41. Status Register 3

Bit7
Bit6

Bit5
Bit 4

Bit3
Bit 2

Bits 1,0

Reserved.

This bit indicates the status of the ‘-write-protect’ signal
from the diskette drive. When this bit is set to 1, the
‘-write-protect’ signal is active.

Reserved.

This bit indicates the status of the ‘-track 0’ signal from the
diskette drive. When this bit is set to 1, the ‘-track 0’
signal is active.

Reserved.

This bit indicates the status of the ‘-head 1 select’ signal
from the diskette drive. When this bit is set to 1, the
‘-head 1 select’ signal is active.

Reserved.

Diskette Drive Controller (Type 1) 25

Signal Descriptions

The diskette-drive controller interface-signal sequences and timings
are compatible with the industry standard 3.5-inch diskette drive
interface. All interface signals are TTL compatible at the
driver/receivers both in the rise and fall times and the interface
levels.

The following describes the interface to the diskette drive.

Output Signals

All output signals to the diskette drive operate between 5 Vdc and
ground with the following definitions:

¢ The inactive level is 2.0 Vdc minimum.
* The active level is 0.8 Vdc maximum.

All input signals from the drive can sink 4.0 milliamperes at the active
level.

* The inactive level is 3.7 Vdc minimum.
¢ The active level is 0.4 Vdc maximum.

-HIGH DENSITY SELECT: When this signal is active, the 2MB mode is
selected. Diskettes are formatted with 18 sectors per track and a
capacity of 1.44MB. When this signal is inactive, the 1MB mode is
selected. Diskettes are formatted with 9 sectors per track and a
capacity of 720KB. This signal is not used by the 720KB diskette
drive.

-DRIVE SELECT 0 - 1: The drive-select signals enable or disable all
drive interface signals except -MOTOR ENABLE. When a drive select
signal is active, the drive is enabled. When it is inactive, all
controlled inputs are ignored and all drive outputs are disabled.

-MOTOR ENABLE 0 - 1: When this signal is made active, the spindle
starts to turn. There must be a 500-millisecond delay after -MOTOR
ENABLE 0 Or -MOTOR ENABLE 1 becomes active before a read, write, or
seek operation. When inactive, this signal causes the spindle motor
to decelerate and stop.

26 Diskette Drive Controller (Type 1)

-DIRECTION: When this signal is active, -STEP moves the heads
toward the drive spindle. When this signal is inactive, -STEP moves
the heads away from the drive spindle. This signal is stable for 1
microsecond before and after the trailing edge of the -STEP pulse.

Note: After a direction change, a 15-millisecond delay is required
before the next ‘-step’ pulse.

-STEP: A 1-microsecond active pulse of this signal causes the
read/write heads to move one track. The state of -DIRECTION at the
trailing edge of -sTEP determines the direction of motion.

Note: Before a read or write operation, a 15-millisecond seek settle

time must be allowed.

-WRITE DATA: A 250-nanosecond pulse of this signal causes a bit to

be written if -WRITE ENABLE is active. All tracks have a
write-precompensation of 125 nanosecond.

-WRITE ENABLE: When active, this signal enables the write current

circuits and -WRITE DATA controls the writing of information.

Motor-start and head-settle times must be observed before this signal

becomes active.

-HEAD 1 SELECT: When active, this signal selects the upper head;
when inactive, this signal selects the lower head.

Diskette Drive Controller (Type 1)

27

Input Signals

All inputs from the drive can sink 4.0 milliamperes at the active level.

¢ The inactive level is 3.7 Vdc minimum.
* The active level is 0.4 Vdc maximum.

-INDEX: When the drive senses the index, it generates an active
pulse of at least 1 millisecond on this line. This signal is gated to the
interface only when a diskette is in the drive.

-TRACK 0: This signal is active when the read/write head is on track
0. Track 0 is determined by a sensor, not a track counter.

The drive can seek to track 0 under control of the system even if a
diskette is not inserted. This allows system software to determine
how many drives are attached to the system. Software selects each
drive and attempts to recalibrate that drive to track 0. The track 0
indication determines whether or not each drive is installed in the
system.

-WRITE PROTECT: When this signal is active, a write-protected
diskette is in the drive; therefore, the drive will not write data.

-READ DATA: Each bit detected provides a 250-nanosecond active
pulse on this line for the 250,000 bits-per-second rate or a
125-nanosecond pulse for the 500,000 bits-per-second rate.

-DISKETTE CHANGE: This signal is active at power-on and latched
inactive when a diskette is present, the drive is selected, and a step
pulse occurs. This signal goes active when the diskette is removed
from the drive. The presence of a diskette is determined by a sensor.

Power Sequencing
-WRITE ENABLE is turned off and is kept off before power is switched on

or off. The read/write heads return to track 0 when the system power
is switched on.

28 Diskette Drive Controller (Type 1)

Connector

Signals and voltages are transferred between the system board and
the diskette drives through a cable or printed-circuit board. Both the
cable and the printed-circuit board provide a 2- by 20-pin connector
for each diskette drive. The locator key is between pins 34 and 36.

The following figure shows the signals and voltages for the connector
at the diskette drive.

Pin 1O Signal Pin 1O Signal
1 N/A -2nd Drive Installed 2 (o] -High Density Select
3 N/A Reserved 4 N/A Reserved
5 N/A Ground 6 N/A Reserved
7 N/A Signal Ground 8 I -Index
9 N/A Signal Ground 10 (o] Reserved
" N/A Signal Ground 12 (o] -Drive Select
13 N/A Ground 14 o Reserved
15 N/A Signal Ground 16 (o] -Motor Enable
17 N/A Signal Ground 18 (o] -Direction In
19 N/A Signal Ground 20 (0] -Step
21 N/A Signal Ground 22 (o] -Write Data
23 N/A Signal Ground 24 (o] -Write Enable
25 N/A Signal Ground 26 | -Track 0
27 N/A Signal Ground 28 | -Write Protect
29 N/A Signal Ground 30 | -Read Data
31 N/A Signal Ground 32 (o] -Head 1 Select
33 N/A Signal Ground 34 | -Diskette Change
35 N/A Ground 36 N/A Ground
37 N/A Ground 38 o +5Vdce
39 N/A Ground 40 o +12 Vdc

Figure 42. Diskette Drive Connector Voltage and Signal Assignments

Diskette Drive Controller (Type 1) 29

Index

C diskette drive controller status

register 5
clock rate 1

command phase 6

command status registers 22 E
command summary 6,7 execution phase 6
command symbols 8
commands 6
format atrack 15 F
invalid command status 21 format a track command 15
read a track 11
read data 9 I
read deleted data 10 . i
readid 12 input signals 28

recalibrate 19 invalid command status 21

scan equal 16

scan high or equal 18 M
scan low or equal 17
sense drive status 20
sense interrupt status 19

multibyte transfer 6

specify 20 (0]
write data 13 output signals 26
write deleted data 14 output, digital 3

configuration control register 4
connector 29

connector voltages, diskette P

drive 29 precompensation 1
controller registers 2 programming considerations 6
D R
data register 5 read a track command 11
data width conversions 1 read data command 9
digital input register 4 read deleted data command 10
digital output 3 read id command 12
digital output register 3 recalibrate command 19
diskette command symbols 8 registers
diskette drive connector 29 configuration control 4
diskette drive controller 6 data 5

digital input 4

30 Index

registers (continued)
digital output 3

diskette drive controller

status 5

status register A 2
status register B 3
status register 0 22

status register 1

status register 2 24
status register 3 25
registers, command status 22

registers, controller

result phase 6

S

scan equal command
scan high or equal command
scan low or equal command

seek 21
seek command 2

sense drive status command 20
sense interrupt status

command 19

signal descriptions 26
specify command 20

status register A
status register B
status register 0
status register 1
status register 2
status register 3
step rate 1
switching density

w

1

2
3
22
23
24
25

1

write data command

write deleted data command

Index

31

Notes:

32 Index

Keyboard and Auxiliary Device Controller
(Type 1)

Description 1
Keyboard Password 2
Controller Status Register 3
Input and Output Buffers 5
Inputand OutputPorts 5
ControllerCommands 7
Keyboard and Auxiliary Device Programming Considerations .. 11
Auxiliary Device/System Timings 12
System ReceivingData 12
System SendingData 13
Signals e 15
Connector e 15

Keyboard and Auxiliary Device Controller (Type 1) |

Figures

1. Controller Status Register, Read Port Hex 0064 3
2. Input Port Bit Definitions 5
3. Output Port Bit Definitions 6
4. ControllerCommandByte 7
5. Command A9 TestResults 9
6. Command ABTestResults 9
7. Bit Definitions of Auxiliary-Device Data Stream 12
8. ReceivingDataTimings 13
9. SendingDataTimings 14
10. Keyboard and Auxiliary Device Signals 15
11. Keyboard and Auxiliary Device Connector Information ... 15

il Keyboard and Auxiliary Device Controller (Type 1)

Description

Input to the keyboard and auxiliary device controller is through two
connectors at the rear of the system unit. One connector is dedicated
to the keyboard, the other is available for an auxiliary device. An
auxiliary device can be any type of serial input device compatible
with the controller interface. The device types include:

* Mouse

¢ Touchpad
¢ Trackball
e Keyboard.

The controller receives the serial data, checks the parity, translates
keyboard scan codes (see bit 6 of the Controller Command byte on
page 7), and presents the data to the system as a byte of data at data
port address hex 0060. The interface interrupts the system when data
is available or waits for polling from the system microprocessor.

Address hex 0064 is the command/status port. When the system
reads port hex 0064, it receives status information from the controller.
When the system writes to the port, the controller interprets the byte
as a command.

Secondary circuit protection is provided on the system board for the
+5 Vdc line to the keyboard and auxiliary device.

Keyboard and Auxiliary Device Controller (Type 1) 1

Keyboard Password

The controller provides a keyboard password mechanism. Three
commands are available for keyboard password operation:

A4 Test Password Installed
A5 Load Password
A6 Enable Password.

The Test Password installed command determines if a keyboard
password is currently installed. The controlling program can use this
command to determine if a keyboard password is loaded before
enabling the password.

The Load Password command allows the system microprocessor to
set a keyboard password in the controller at any time. Any existing
password is lost, and the new password becomes active. The
password must be installed in scan-code format.

To set the controller to the secure mode, the system microprocessor
issues the Enable Password command. Once the Enable Password
command is issued, the controller does not pass any information to
the system microprocessor. It intercepts the keyboard data stream
and continuously compares it to the installed password pattern.
Keyboard and auxiliary device data are not passed to the system
microprocessor until a match occurs. Then, the state of the controller
is restored and data is passed to the system microprocessor.

The keyboard password can be changed at any time. A command to

verify the installed password is not provided. Also, commands are
not accepted by the controller when the keyboard password is active.

2 Keyboard and Auxiliary Device Controller (Type 1)

Controller Status Register

The following figure shows the Controller Status register.

Function

Parity Error

General Time-Out

Auxiliary Device Output Buffer Full
Inhibit Switch

Command/Data

System Flag

input Buffer Full

Output Buffer Full

O=NWHAOON

Figure 1. Controller Status Register, Read Port Hex 0064

Note: Controller commands C1 and C2 place data in bits 7 through 4
of the Controller Status register. See commands C1 and C2 on
page 10 for more information.

Bit7 When set to 0, this bit indicates the last byte of data
received from the keyboard had odd parity. When set to 1,
this bit indicates the last byte had even parity. The
keyboard should send with odd parity.

Bit6 When set to 1, this bit indicates that a transmission was
started by the keyboard but did not finish within the
programmed receive time-out delay or a transmission was
started by the controller and one of the following three
errors occurred:

1. If the transmit byte was not clocked out within the
specified time limit, this will be the only error.

2. If the transmit byte was clocked out but a response
was not received within the programmed time limit,
this will be the only error.

3. If the transmit byte was clocked out but the response
was received with a parity error, the transmit time-out
and parity error bits are set to 1.

Keyboard and Auxiliary Device Controller (Type 1) 3

Bit4

Bit3

Bit 2

Bit 1

This bit works in conjunction with bit 0. When this bit and
bit 0 are set to 1, auxiliary device data is in the output
buffer. When this bit is set to 0 and bit 0 is set to 1,
keyboard or command controller response data is in the
output buffer.

When set to 0, this bit indicates the password state is
active and the keyboard is inhibited. When set to 1, this